## **Waste Sector Emission Estimates**



Soumya Chaturvedula ICLEI South Asia

> 3<sup>rd</sup> February 2017 Kolkata

WWW.GHGPLATFORM-INDIA.ORG

## **Objectives and Scope**

GHG Platform INDIA

□ To create a sufficiently detailed, transparent and publicly available estimates and analysis of India's current and historical annual GHG emission for Waste Sector

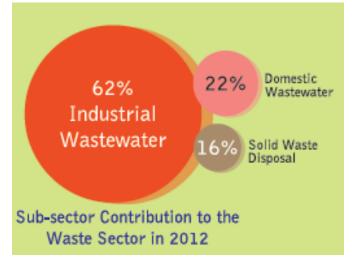
□ To complement existing efforts of the Government of India (GoI) by addressing existing data gaps and accessibility and informing policy dialogue through increased analytics

□Follows 2006 IPCC Guidelines and in line with Government of India's 2007 inventory (NATCOM-II), includes sub-sectors

- Industrial Wastewater Treatment and Discharge
- Municipal Solid Waste (Urban)
- Domestic Wastewater Treatment and Discharge (Urban)

•Tier I (IPCC defaults)+ Tier II (country specific emission factors & coefficients where available)

#### **Phase I: National level emission estimates from 2007-2012**


**Phase II (ongoing):** 

Extend and strengthen National level emission estimates and prepare State level estimates from 2005-2014

### **Overall Results for Waste Sector**



|                                                        | G     | HG Emissic | ons (Megate | onnes of CO | O <sub>2</sub> equivale | nt)   | Avg.                            |
|--------------------------------------------------------|-------|------------|-------------|-------------|-------------------------|-------|---------------------------------|
| Sub-sector                                             | 2007  | 2008       | 2009        | 2010        | 2011                    | 2012  | Annual<br>Growth<br>Rate<br>(%) |
| Solid Waste<br>Disposal                                | 10.76 | 11.47      | 12.16       | 12.85       | 13.52                   | 14.18 | 5.28%                           |
| Domestic<br>Wastewater<br>Treatment and<br>Discharge   | 16.86 | 17.18      | 17.43       | 17.75       | 18.24                   | 18.60 | 1.72%                           |
| Industrial<br>Wastewater<br>Treatment and<br>Discharge | 32.51 | 36.02      | 49.52       | 48.76       | 58.96                   | 54.02 | 11.03%                          |
| OVERALL<br>WASTE<br>SECTOR                             | 60.13 | 64.67      | 79.11       | 79.36       | 90.72                   | 86.80 | 7.39%                           |



□12 Industry sectors generating substantial organic wastewater considered

| Iron and Steel | Production of Pig Iron, Sponge Iron and Finished steel (alloy & Non-alloy)  |
|----------------|-----------------------------------------------------------------------------|
| Fertilizer     | Production of Nitrogenous and Phosphatic Fertilizers                        |
| Beer           | Production of all types of Beer (alcoholic)                                 |
| Meat           | Finished Meat production from all the registered Slaughterhouses            |
| Sugar          | Finished Sugar production from cane                                         |
| Coffee         | Production of all types of coffee (Arabica, Robusta and varieties of these) |
| Soft Drink     | Production of non-alcoholic soft drinks                                     |
| Pulp & Paper   | Production of paper from all pulp and paper industries                      |
| Petroleum      | Refining and production of Petroleum, Oil and Lubricants                    |
| Rubber         | Production of Finished Natural and Synthetic Rubber                         |
| Dairy          | Production of milk in the Dairy Sector                                      |
| Tannery        | Production of Raw Bovine, Sheep, lamb, Goat and kid skins and hides         |



Emission estimation for each industry sector based on following parameters

- Industrial production in tonnes
- Wastewater generated per tonne of product
- Organic concentration (i.e. characteristic of wastewater)
- MCF based on broad treatment technology used by sector
- Methane recovery (if any)

#### □Industrial production

Data sources:

- Indian Bureau of Mines
- National Dairy Development Board
- Rubber Board
- Fertilizers Association of India
- Department of Industrial Policy & Promotion (Handbook of Industrial Policy & Statistics)

#### Data reliability and availability issues:

- Aerated soft drinks has not been included under Soft Drinks Sector
- Reliability issues in production data available for **Beer sector**

GHG

INDIA

### GHG Platform INDIA

#### **Wastewater generated per tonne of product**

• Based on NATCOM-II, related NEERI studies, 2006 IPCC Guidelines (in this order)

| Industry     | Wastewater generation<br>(m3/tonne of product) | Reference                                                      |
|--------------|------------------------------------------------|----------------------------------------------------------------|
| Iron & Steel | 60                                             | GOI's NATCOM-II                                                |
| Fertilizer   | 8                                              | GOI's NATCOM-II                                                |
| Beer         | 9                                              | GOI's NATCOM-II                                                |
| Sugar        | 1                                              | GOI's NATCOM-II                                                |
| Coffee       | 5                                              | GOI's NATCOM-II                                                |
| Soft Drink   | 3.7                                            | GOI's NATCOM-II                                                |
| Petroleum    | 0.7                                            | GOI's NATCOM-II                                                |
| Dairy        | 3                                              | GOI's NATCOM-II                                                |
| Meat         | 11.7                                           | GOI's NATCOM-II                                                |
| Pulp & Paper | 162                                            | 2006 IPCC guidelines for National GHG Inventories              |
| Rubber       | 26.3                                           | GOI's NATCOM-II                                                |
| Tannery      | 32                                             | NEERI (2010): Inventorisation of CH4 Emissions from Domestic & |
|              |                                                | Key Industries Wastewater                                      |



#### **Methane Correction Factor (MCF)**

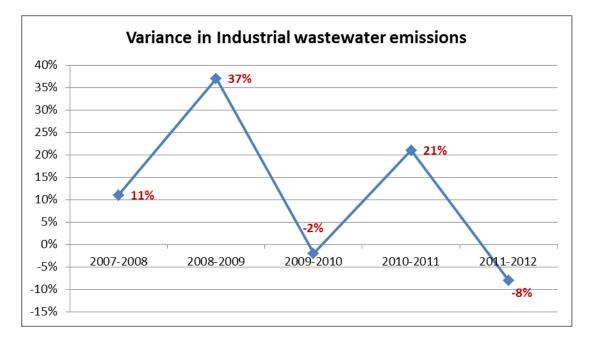
- Based on wastewater treatment technology largely used by sector
- Signifies degree to which the wastewater treatment system is anaerobic and thereby generates GHG emission

| ment and discharge Remarks/Details |                                                                                                                 |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                 |
| -                                  | 0.1                                                                                                             |
|                                    |                                                                                                                 |
| Well managed                       | 0                                                                                                               |
| Not well managed. Overloaded       | 0.3                                                                                                             |
| CH4 recovery not considered        | 0.8                                                                                                             |
| CH4 recovery not considered        | 0.8                                                                                                             |
|                                    |                                                                                                                 |
| Depth less than 2 metres           | 0.2                                                                                                             |
| Depth more than 2 metres           | 0.8                                                                                                             |
|                                    | -<br>Well managed<br>Not well managed. Overloaded<br>CH4 recovery not considered<br>CH4 recovery not considered |

Source: 2006 IPCC Guidelines

MCF values used based on NATCOM-II, 2006 IPCC Guidelines and sector-specific documents/studies (in this order)

| Industry     | Prevalent Treatment Technology  | MCF | Corresponding<br>Emission Factor | <b>Reference for Treatment Technology used in the Sector</b>                      |
|--------------|---------------------------------|-----|----------------------------------|-----------------------------------------------------------------------------------|
| Iron & Steel | Aerobic treatment- well managed | 0   | 0                                | International publication on Wastewater treatment technologies in Major Steel     |
|              |                                 |     |                                  | Industries of India                                                               |
| Fertilizer   | Anaerobic shallow lagoon        | 0.2 | 0.05                             | GOI's NATCOM-II                                                                   |
| Beer         |                                 | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |
| Sugar        | A na anabia digastan/na atan    | 0.8 | 0.2                              | GOI's NATCOM-II; CDM project database                                             |
| Coffee       | Anaerobic digester/reactor –    | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |
| Soft Drink   |                                 | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |
| Petroleum    | Aerobic treatment- well managed | 0   | 0                                | MoEF: EIA Guidance manual for refineries                                          |
| Dairy        |                                 | 0.8 | 0.2                              | GOI's NATCOM-II                                                                   |
| Meat         | Anaerobic digester/reactor      | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |
| Pulp & Paper |                                 | 0.8 | 0.2                              | GOI's NATCOM-II; CDM project database                                             |
| Rubber       | Aerobic treatment- well managed | 0   | 0                                | CPCB report on 'Pollution Control in Rubber Industry; Waste treatment handbook by |
|              |                                 |     |                                  | Woodard available on NEERI website                                                |
| Tannery      | Anaerobic shallow lagoon        | 0.2 | 0.05                             | NEERI (2010): Inventorisation of CH4 Emissions from Domestic & Key Industries     |
|              |                                 |     |                                  | Wastewater                                                                        |


GHG

INDIA

## i. Industrial Wastewater: Key Findings

GHG Platform INDIA

High variance observed year on year in industrial wastewater emission estimatesPulp & paper, Coffee, Soft drink, Meat and Tannery are critical sectors



| Industry Type | GHG emission in kg CO <sub>2</sub> e<br>per tonne of product | GHG emission in kg CO <sub>2</sub> e per<br>cu. m of wastewater generated |
|---------------|--------------------------------------------------------------|---------------------------------------------------------------------------|
| Coffee        | 189.0                                                        | 37.8                                                                      |
| Soft drink    | 139.9                                                        | 37.8                                                                      |
| Pulp & Paper  | 4,014.4                                                      | 24.8                                                                      |
| Meat          | 201.5                                                        | 17.2                                                                      |
| Tannery       | 104.2                                                        | 3.3                                                                       |
| Fertilizers   | 25.2                                                         | 3.1                                                                       |
| Sugar         | 3.1                                                          | 3.1                                                                       |
| Beer          | 27.4                                                         | 3.0                                                                       |
| Dairy         | 7.1                                                          | 2.4                                                                       |
| Petroleum     | -                                                            | -                                                                         |
| Iron & Steel  | -                                                            | -                                                                         |
| Rubber        | -                                                            | -                                                                         |

#### Note:

Emissions from Iron & Steel, Petroleum and Rubber sectors are zero since aerobic treatment systems used are assumed to be well managed, having zero MCF and thereby resulting in no CH4 emission for these sectors in the assessment

## ii. Domestic Wastewater: Methodology



### **<u>CH</u><sub>4</sub> emissions from Domestic Wastewater**

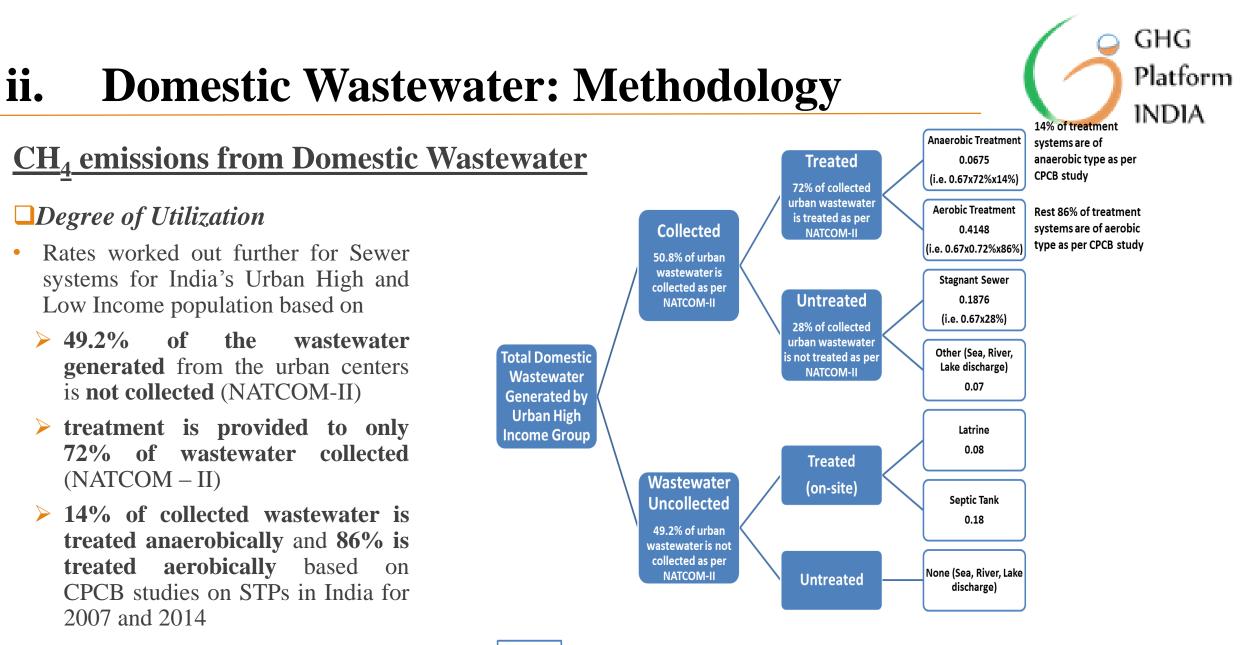
□Key parameters for emission estimation

- Fraction of Urban population in High Income & Low Income group
- Degree of Utilization of each treatment type (i.e. proportion of resident population using different wastewater treatment/discharge systems)
- Biochemical oxygen demand (BOD) (i.e. organic content in wastewater)
- MCF based on treatment technology used
- Collected/Uncollected fractions of Wastewater
- Methane recovery (if any)

## ii. Domestic Wastewater: Methodology



### **CH<sub>4</sub> emissions from Domestic Wastewater**


### **G***Fraction of population by income group*

- As per 2006 IPCC Guidelines, Urban wastewater categorized into two income groups
  - ➢Urban high income
  - ➢ Urban low income

### Degree of utilization

• relates to the proportion of resident population using different wastewater treatment/discharge pathways or systems

| Income     | IPCC Default Degree of Utilization Rates for Discharge/Treatment Type |         |       |       |      |  |
|------------|-----------------------------------------------------------------------|---------|-------|-------|------|--|
| Group      | Septic Tank                                                           | Latrine | Other | Sewer | None |  |
| Urban High | 18%                                                                   | 8%      | 7%    | 67%   | 0%   |  |
| Urban Low  | 14%                                                                   | 10%     | 3%    | 53%   | 20%  |  |



•

Wastewater discharge/treatment pathways or systems with Degree of Utilization Rates

### ii. Domestic Wastewater: Methodology



### **CH<sub>4</sub> emissions from Domestic Wastewater**

**Methane Correction Factor (MCF)** 

• values for applicable treatment types for India based on IPCC and NATCOM-II

| Specific Treatment/Discharge pathway or system                                           | MCF values as per<br>IPCC |
|------------------------------------------------------------------------------------------|---------------------------|
| Septic Tank                                                                              | 0.5                       |
| Latrine (Dry climate, ground water table lower than latrine, small family (3-5 persons)) | 0.1                       |
| Other (i.e. Sea, river and lake discharge)                                               | 0.1                       |
| Stagnant sewer                                                                           | 0.5                       |
| Anaerobic Reactor/Anaerobic digester for sludge                                          | 0.8                       |
| Centralized, aerobic treatment plant (not well managed)                                  | 0.3                       |
| None (i.e. Sea, river and lake discharge)                                                | 0.1                       |

## ii. Domestic Wastewater: Methodology

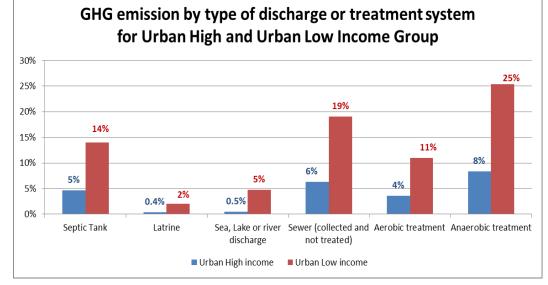


### **N<sub>2</sub>O emissions from Domestic Wastewater**

□Key parameters for emission estimation

- Country population
- Average annual per capita protein consumption (kg/person/yr): NSSO surveys
- Other default coefficients from IPCC

| Year     | rs     | Daily per capita protein<br>consumption (gm/capita/day) | Source                                           |  |
|----------|--------|---------------------------------------------------------|--------------------------------------------------|--|
| 2007 and | 1 2008 | 57.0                                                    | Nutritional Intake in India 2004-05, NSSO Report |  |
| 2009 and | 1 2010 | 56.15*                                                  | Nutritional Intake in India 2009-10, NSSO Report |  |
| 2011 and | l 2012 | 58                                                      | Nutritional Intake in India 2011-12, NSSO Report |  |


\*The NSSO survey was conducted over two rounds (or schedules). Values used are average values based on findings across the two rounds.

### ii. Domestic Wastewater: Key Findings

• Per capita emissions from domestic wastewater are 20% higher for urban high income population than for the urban low income population

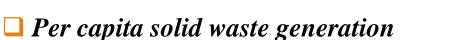
| Per capita GHG emissions for domestic wastewater | kg of CO <sub>2</sub> e<br>(2012) |
|--------------------------------------------------|-----------------------------------|
| Urban High Income                                | 42                                |
| Urban Low Income                                 | 35                                |

- About **30 percent of CH<sub>4</sub> generated** in anaerobic treatments systems is **lost as dissolved gas** in the treated effluent
- Adopting CH<sub>4</sub> capture and recovery technologies (biogas/electricity generation/thermal energy) in anaerobic wastewater treatment systems (largely serving high income population group) is a relatively quick-win mitigation solution



GHG

INDIA




### **U**Key parameters for emission estimation:

- Urban population
- Per capita solid waste generation (kg/day)
- Proportion of solid waste going to landfill Site (%)
- Degradable Organic Carbon (DOC) based on waste composition

#### **First Order Decay (FOD) method used as per 2006 IPCC guidelines and NATCOM-II**

• emissions from decomposition of solid waste over a period of 50 years prior to 2007 i.e. from 1956-2006



• Waste generation based on population and per capita waste generation

| Year | Daily Per capita<br>Waste generation<br>(gm/day) | Annual Growth<br>rate |
|------|--------------------------------------------------|-----------------------|
| 1951 | 305                                              | 1.1%                  |
| 1961 | 340                                              | 1.0%                  |
| 1971 | 375                                              | 1.5%                  |
| 1981 | 430                                              | 0.7%                  |
| 1991 | 460                                              | 1.2%                  |
| 2007 | 550                                              | 1.2%                  |

Source: TERI

#### **Proportion of waste going to landfill**

• 70% of waste generated assumed to be going to landfill as per NATCOM-II

GHG

INDIA



### Degradable Organic Carbon (DOC)

- Depends on the waste composition
- Changing lifestyles have led to changes in waste composition over the years

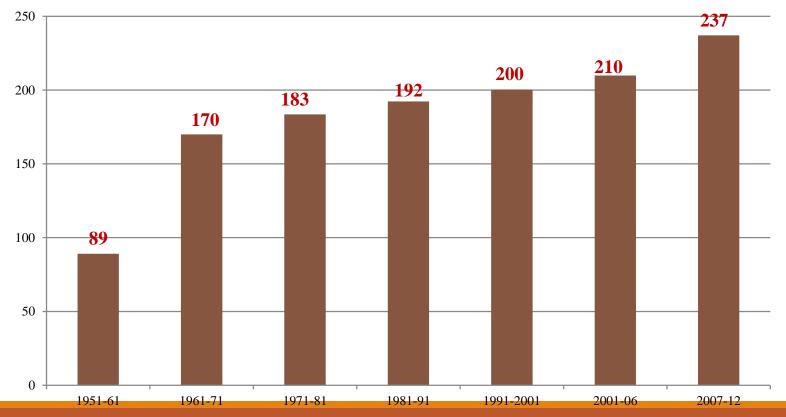
| Commonant   | Was  | te Composition ( | (%)  |
|-------------|------|------------------|------|
| Component   | 1971 | 1995             | 2005 |
| Paper       | 4.14 | 5.78             | 8.13 |
| Plastics    | 0.69 | 3.9              | -    |
| Rubber      | -    | -                | 9.2  |
| Metals      | 0.5  | 1.9              | 0.5  |
| Glass       | 0.4  | 2.1              | 1.01 |
| Rags        | 3.83 | 3.5              | 4.4  |
| Compostable | 41.2 | 41.8             | A7 A |
| Matter      | 41.2 | 41.0             | 47.4 |
| Inert       | 49.2 | 40.3             | 25.2 |

Source: CPCB and NEERI

Degradable Organic Carbon (DOC)

- NATCOM-II uses aggregate DOC value of 0.11
- In our emission estimates, DOC value for each of the constituent degradable fractions of waste has been calculated using the default DOC content from 2006 IPCC Guidelines
- Changing waste composition has been factored in to estimate varying DOC values over the years

|                           | W         | Vaste Compositio | Default DOC Content |                                       |
|---------------------------|-----------|------------------|---------------------|---------------------------------------|
| Component                 | 1971      | 1995             | 2005                | values in % (2006 IPCC<br>Guidelines) |
| Paper                     | 4.14%     | 5.78%            | 8.13%               | 40%                                   |
| Rags                      | 3.83%     | 3.5%             | 4.4%                | 24%                                   |
| <b>Compostable Matter</b> | 41.24%    | 41.8%            | 47.4%               | 15%                                   |
| <b>DOC Estimated for</b>  |           |                  |                     |                                       |
| overall waste             | 0.088     | 0.094            | 0.114               |                                       |
| (in fraction)             |           |                  |                     |                                       |
| Applicable time period    |           |                  |                     |                                       |
| considered for estimated  | 1956-1994 | 1995-2004        | 2005-2012           | -                                     |
| DOC value                 |           |                  |                     |                                       |


Source: CPCB and NEERI, CPHEEO

GHG

INDIA

## iii. Municipal Solid Waste: Key Findings

Changing lifestyles impacting waste composition and GHG emissionGHG emissions from a unit amount of solid waste disposed are increasing over time



#### Tonne of CO2e emission per tonne of solid waste disposed

GHG

INDIA

### Comparison with GoI estimates for 2007 & 2010

|                          |                                       | GHG                     | Emissions (Me                                |                                       |                                        |                                              |                                                                                                                                                                                                                                            |  |
|--------------------------|---------------------------------------|-------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          | 2007                                  |                         |                                              | 2010                                  |                                        |                                              |                                                                                                                                                                                                                                            |  |
| Sub-sector               | GHG<br>Platform<br>India<br>Estimates | NATCOM-<br>II<br>(2007) | Deviation<br>wrt Official<br>Estimate<br>(%) | GHG<br>Platform<br>India<br>Estimates | Biennial<br>Update<br>Report<br>(2010) | Deviation<br>wrt Official<br>Estimate<br>(%) | Possible reasons for divergence                                                                                                                                                                                                            |  |
| Solid Waste<br>disposal  | 10.76                                 | 12.69                   | -15.21%                                      | 12.85                                 | 13.96                                  | -7.95%                                       | <ul> <li>Varying per capita waste generation rates</li> <li>Varying DOC values over time periods</li> <li>Possible variation in Population estimates</li> </ul>                                                                            |  |
| Domestic<br>Wastewater   | 16.86                                 | 22.98                   | -26.63%                                      | 17.75                                 | 29.38                                  | -39.58%                                      | <ul> <li>Share of aerobic and anaerobic treatments<br/>based on CPCB analysis</li> <li>Ambiguity on degree of utilization rates,<br/>assumptions in NATCOM &amp; BUR</li> </ul>                                                            |  |
| Industrial<br>Wastewater | 32.51                                 | 22.05                   | 47.44%                                       | 48.76                                 | 21.71                                  | 124.60%                                      | <ul> <li>Multiple data sources used for industrial production</li> <li>Ambiguity on data sources and values used for different sectors in NATCOM &amp; BUR for industrial production, wastewater generation, COD and MCF values</li> </ul> |  |

GHG

INDIA

### Challenges



| Limited clarity and ambiguity in<br>National Communication documents                                                                               | <ul> <li>Activity data and data sources</li> <li>Approach and assumptions</li> <li>Emission factors &amp; sector specific parameters/coefficients</li> </ul>                                                                                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Limited updated information available<br>on values for country specific<br>parameters in National Communication<br>documents and secondary sources | <ul> <li>Coefficients for organic characteristics of solid waste and wastewater</li> <li>Emission factors for treatment technologies in use on-ground</li> <li>Degree of utilization rates for domestic wastewater discharge/treatment</li> </ul>                                             |  |  |
| Non availability of updated year-wise activity data                                                                                                | <ul> <li>Solid waste composition and per capita waste generation rates</li> <li>Industrial production and industrial wastewater generation</li> <li>Prevalent wastewater treatment systems</li> </ul>                                                                                         |  |  |
| Lack of centralized datasets with usable<br>information for development of GHG<br>emission                                                         | <ul> <li>Limitations in official datasets with regards to usability of activity data</li> <li>Lack of a centralized information repository, particularly for industrial sector</li> </ul>                                                                                                     |  |  |
| Reliability of Information                                                                                                                         | <ul> <li>Inconsistencies in official datasets/statistical records</li> <li>Variation in information in NATCOM reports &amp; IPCC default values and on-ground surveys/studies of government agencies</li> <li>Eg: Extent of Anaerobic and aerobic treatment, industrial production</li> </ul> |  |  |

## Recommendations

GHG Platform INDIA

□Need for **periodic reporting** on

- Changes in solid waste characteristics and generation rates with changing lifestyles
- **Treatment technologies and performance of STPs** by Central and State Pollution Control Boards
- Status and impacts of on-ground developments and improvements in treatment technologies
- Use existing data management processes to capture information required and identify relevant entities
  - E.g. Annual reports from States on solid waste management collected by State Pollution Control Boards
  - Industrial information collected under the Annual Survey of Industries (ASI)
- □**Transparent and robust data management systems** can improve accuracy and capture emission reduction from policy and programme initiatives

# Thank You

### Discussions



#### Industrial Wastewater

- Wastewater generation per tonne of industrial product for industry sectors. Changes in Industrial Wastewater generation due to technological improvements...
- Prevalent Industrial Wastewater treatment technologies for industry sectors especially for Iron & Steel, Rubber and Petroleum...
- In the absence of state level industrial production data, economic indicators/proxies to apportion national level Industrial Wastewater emission estimates to the state level...

#### Domestic Wastewater

• Proportion of resident population using different Domestic Wastewater treatment/discharge pathways – *sewer*, *latrine, septic tanks, none, others.* Information availability at the state level...

#### **Municipal Solid Waste**

- Updated data on composition of solid waste at the state level...
- Proportion of solid waste going to landfill site for the states. Factoring in waste processing plants which are not operational...



#### **Wastewater generated per tonne of product**

• Based on NATCOM-II, related NEERI studies, 2006 IPCC Guidelines (in this order)

| Industry     | Wastewater generation<br>(m3/tonne of product) | Reference                                                      |
|--------------|------------------------------------------------|----------------------------------------------------------------|
| Iron & Steel | 60                                             | GOI's NATCOM-II                                                |
| Fertilizer   | 8                                              | GOI's NATCOM-II                                                |
| Beer         | 9                                              | GOI's NATCOM-II                                                |
| Sugar        | 1                                              | GOI's NATCOM-II                                                |
| Coffee       | 5                                              | GOI's NATCOM-II                                                |
| Soft Drink   | 3.7                                            | GOI's NATCOM-II                                                |
| Petroleum    | 0.7                                            | GOI's NATCOM-II                                                |
| Dairy        | 3                                              | GOI's NATCOM-II                                                |
| Meat         | 11.7                                           | GOI's NATCOM-II                                                |
| Pulp & Paper | 162                                            | 2006 IPCC guidelines for National GHG Inventories              |
| Rubber       | 26.3                                           | GOI's NATCOM-II                                                |
| Tannery      | 32                                             | NEERI (2010): Inventorisation of CH4 Emissions from Domestic & |
|              |                                                | Key Industries Wastewater                                      |

MCF values used based on NATCOM-II, 2006 IPCC Guidelines and sector-specific documents/studies (in this order)

| Industry     | Prevalent Treatment Technology    | MCF | Corresponding<br>Emission Factor | Reference for Treatment Technology used in the Sector                             |  |
|--------------|-----------------------------------|-----|----------------------------------|-----------------------------------------------------------------------------------|--|
| Iron & Steel | Aerobic treatment- well managed   | 0   | 0                                | International publication on Wastewater treatment technologies in Major Steel     |  |
|              |                                   |     |                                  | Industries of India                                                               |  |
| Fertilizer   | Anaerobic shallow lagoon          | 0.2 | 0.05                             | GOI's NATCOM-II                                                                   |  |
| Beer         |                                   | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |  |
| Sugar        | A popular digostor/reactor        | 0.8 | 0.2                              | GOI's NATCOM-II; CDM project database                                             |  |
| Coffee       | Anaerobic digester/reactor –      | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |  |
| Soft Drink   |                                   | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |  |
| Petroleum    | Aerobic treatment- well managed   | 0   | 0                                | MoEF: EIA Guidance manual for refineries                                          |  |
| Dairy        |                                   | 0.8 | 0.2                              | GOI's NATCOM-II                                                                   |  |
| Meat         | Anaerobic digester/reactor        | 0.8 | 0.2                              | 2006 IPCC Guidelines                                                              |  |
| Pulp & Paper |                                   | 0.8 | 0.2                              | GOI's NATCOM-II; CDM project database                                             |  |
| Rubber       | Aerobic treatment- well managed 0 |     | 0                                | CPCB report on 'Pollution Control in Rubber Industry; Waste treatment handbook by |  |
|              |                                   |     |                                  | Woodard available on NEERI website                                                |  |
| Tannery      | Anaerobic shallow lagoon          | 0.2 | 0.05                             | NEERI (2010): Inventorisation of CH4 Emissions from Domestic & Key Industries     |  |
|              |                                   |     |                                  | Wastewater                                                                        |  |

GHG

### ii. Domestic Wastewater: Methodology



### **CH<sub>4</sub> emissions from Domestic Wastewater**

### Degree of utilization

• relates to the proportion of resident population using different wastewater treatment/discharge pathways or systems

| Income     | IPCC Default Degree of Utilization Rates for Discharge/Treatment Type |         |       |       |      |  |  |
|------------|-----------------------------------------------------------------------|---------|-------|-------|------|--|--|
| Group      | Septic Tank                                                           | Latrine | Other | Sewer | None |  |  |
| Urban High | 18%                                                                   | 8%      | 7%    | 67%   | 0%   |  |  |
| Urban Low  | 14%                                                                   | 10%     | 3%    | 53%   | 20%  |  |  |



### Degradable Organic Carbon (DOC)

- Depends on the waste composition
- Changing lifestyles have led to changes in waste composition over the years

| Commonant   | Was  | te Composition ( | (%)  |
|-------------|------|------------------|------|
| Component   | 1971 | 1995             | 2005 |
| Paper       | 4.14 | 5.78             | 8.13 |
| Plastics    | 0.69 | 3.9              | -    |
| Rubber      | -    | -                | 9.2  |
| Metals      | 0.5  | 1.9              | 0.5  |
| Glass       | 0.4  | 2.1              | 1.01 |
| Rags        | 3.83 | 3.5              | 4.4  |
| Compostable | 41.2 | 41.8             | 47.4 |
| Matter      | 41.2 | 41.0             | 4/.4 |
| Inert       | 49.2 | 40.3             | 25.2 |

Source: CPCB and NEERI