

Methodology Note Greenhouse Gas Emissions of India

Subnational Estimates 2005 to 2015 series

September 2019

Industry Sector

Authors Vaibhav Gupta Tirtha Biswas Deepa Janakiraman Karthik Ganesan Sector Lead

BETONMAC

An initiative supported by

Usage Policy Any re-production or re-distribution of the material(s) and information displayed and published on the GHG Platform India and other digital/print mediums shall be accompanied by appropriate citation and due acknowledgment to the Council on Energy, Environment and Water (CEEW) and the GHG Platform India for such material(s) and information.

You must give appropriate credit, provide a link, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the GHG Platform India endorses you or your use. Data sheets may be revised or updated from time to time. The latest version of each data sheet will be posted on the website. To keep abreast of these changes, please email us at <u>info@ghgplatform-india.org</u> so that we may inform you when data sheets have been updated.

Citation Gupta, V., Biswas, T., Janakiraman, D., Ganesan, K., (2019). Greenhouse Gases Emissions of India (subnational estimates): Manufacturing Sector (2005-2015 series) dated September 25, 2019, Retrieved from: <u>http://ghgplatform-india.org/data-and-emissions/industry.html</u>

In instances where economywide estimates have been used from the GHG Platform India website, the recommended citation is "GHG platform India 2005-2015 Sub-National Estimates: 2005-2015 Series"

Disclaimer The data used for arriving at the results of this study is from published, secondary sources, or wholly or in part from official sources that have been duly acknowledged. The veracity of the data has been corroborated to the maximum extent possible. However, GHG Platform India shall not be held liable and responsible to establish the veracity of or corroborate such content or data and shall not be responsible or liable for any consequences that arise from and/or any harm or loss caused by way of placing reliance on the material(s) and information displayed and published on the website or by further use and analysis of the results of this study. During peer review, inquiries and analytical procedures were followed to ascertain whether any or no material modifications to the findings are necessary and whether the methods followed are in conformity with generally accepted guidance and GHG accounting principles. The findings and conclusions in this methodology note are those of the author(s) and do not necessarily represent the views of the peer reviewers or WRI India.

Version	Date	Brief description on changes from previous version
1.0	25	This methodology note includes an estimation and analysis of India's annual
	September	state-level GHG emissions from the Manufacturing Industries in India: 2005
	2019	to 2015, prepared by CEEW under the GHG Platform India initiative
		(www.ghgplatform-india.org).
		This document is undergoing a peer review process, however, any changes
		that may be made further will not have an impact on the figures and estimates.
		Once the review process is completed, the final document will be uploaded and the same shall be updated in this section.

Version information / Revision history

Foreword

On December 2015, the international community took a significant step to address the global challenge of climate change by endorsing the Paris Agreement at the 21st session of the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change. The milestone Paris Agreement will serve as a foundation for concerted international action to address the threat posed by climate change.

It is now more than evident that climate change is not the responsibility of national governments only. It impacts every aspect of society, and therefore, and thus comes into focus the role of non-state actors. Non-state actors like civil society organizations and research organizations can inform and help national governments devise robust climate actions and strategies. The first step in this is to generate greenhouse gas (GHG) emission estimates of all relevant economic sectors from recent years.

To generate these estimates a few research organizations came together to form the GHG Platform - India. It is a civil society initiative providing independent estimation and analysis of India's GHG emissions. The platform's intention to assist the national government by helping address existing data gaps and data accessibility issues that extend beyond the scope of national inventories, and increasing the volume of analytics and policy dialogue on India's GHG emission sources, profile, and related policies.

The platform hosted GHG estimates for all key economic sectors for the period of 2005 - 2013 accounting for carbon dioxide, methane and nitrous oxide emissions at the national and subnational. In the present edition, the time series has been extended and the methodology note now presents GHG estimates for the period 2005 - 2015/16 across all key economic sectors. The note also highlights the trend in GHG emissions across the sectors and transparently documents all the assumptions, activity data and emission factors that were used to arrive at the estimates.

The GHG estimates presented in the note follow 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for national GHG inventories and associated good practice guidance. Further, the note has been through a rigorous peer review and independent technical review process to ensure accuracy, transparency, consistency, completeness and relevance. On behalf of the platform, we hope that the note will be useful to all relevant stakeholders.

Credits

Led and coordinated by

Vaibhav Gupta Tirtha Biswas Deepa Janakiraman Karthik Ganesan

Peer reviewer

The authors would like to express their sincere gratitude to Mr. Subrata Chakrabarty and Mr. Chirag Gajjar from World Resources Institute India (WRII) for their valuable contribution towards comprehensive review of the methodology note.

Funder

Special thanks to Shakti Sustainable Energy Foundation (SSEF) for providing financial support towards this endeavour.

Editing & design

Designed and formatted by Priya Kalia – Communications, Vasudha Foundation. Design reviewed by Communications Team (All partner Organizations), GHG Platform India Cover Image Photo by rawpixel.com from Pexels

Contributors

Manufacturing sector GHG emissions

Vaibhav Gupta (CEEW) Tirtha Biswas (CEEW) Deepa Janakiraman (CEEW) Karthik Ganesan (CEEW)

Compilation of report

Samiksha Dhingra (Vasudha Foundation) Deepshikha Singh (Vasudha Foundation)

Reviewers Chirag Gajjar (WRI India) Subrata Chakrabarty (WRI India)

Editorial work

Priya (Vasudha Foundation)

Acknowledgements

At the outset, Council on Energy Environment and Water (CEEW) would like to thank the GHG Platform India for recognizing the need for such studies – especially for an informed debate on climate change concerns. The study would not have been possible without generous grant support from the Shakti Sustainable Energy Foundation.

We would like to acknowledge the constant feedback and critical inputs received from the partner institutes at the GHG Platform India, during all the review meetings hosted by the Secretariat, Vasudha Foundation.

We thank the Ministry of Statistics and Programme Implementation (MoSPI) for promptly responding to our feedback and queries on their Annual Survey of India (ASI) statistics, which is a cornerstone of our estimation methodology. We would also want to thank the Indian Bureau of Mines (IBM) for providing us with relevant information.

CEEW would like to recognize the cooperation of several individuals, organizations, and government departments in providing useful insights and information that, helped us in arriving at meaningful estimates. We deeply appreciate the time they have spent to share their knowledge, experience, and perspectives with the research team.

Last, but not the least, we express our appreciation to WRI India for a comprehensive review of this study at par with standard IPCC guidelines.

Contents

Executive	e summary	6
Key Hi	ghlights	6
ES 1. E	Background information of GHG emission estimates	6
ES 2. S	Summary of GHG sources and sinks	7
ES 3. S	Summary of GHG trend	8
1. Intro	duction and background	10
1.1	Context	10
1.2	GHG coverage	10
1.3	Key economic sectors covered	11
1.4	Boundary of GHG estimates	11
1.5	Reporting period	11
1.6	Outline of GHG estimates	11
1.7	Institutional information	12
1.8	Data collection process and Storage	12
1.9	Quality control (QC) and quality assurance (QA)	13
1.10	General assessment of completeness	14
2. Tren	ds in GHG emissions	15
2.1	Trend in aggregated GHG emissions (energy use and IPPU)	15
2.2	Trend in GHG emissions by type of GHG	16
2.3	Key drivers of the emission trends in various sectors	17
3. Indu	strial energy-use and IPPU	18
3.1	Overview of the sector	18
3.2	Analysis of sectoral emissions	19
3.3	Sectoral quality control (QC) and quality assurance (QA)	23
3.4	Key source category [1A1b, 1A1c, 2A: energy-use emissions]	24
3.4.1	Category description	24
3.4.2	Methodology	25
Method	lology	28
Proxies	s, assumptions and correction measures	29
3.4.3	Recalculation	31
3.5	Key source category [2A, 2B, 2C, 2D: Industrial Process and Product Use emissions]	32
3.5.1	Category description	32
3.5.2	Methodology	35
Method	lology	37
3.5.3	Recalculation	40
3.6	Uncertainty	40

3	7 Recommended improvements4	2
4.	Comparison with national inventories4	4
Ref	erences4	6
List	of Abbreviations4	9
List	of Tables5	0
List	of Figures5	1
Ann	exures5	2

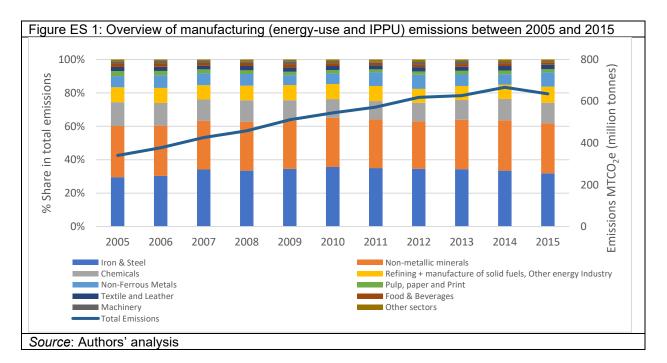
Executive summary

Key Highlights

- The manufacturing sector (energy-use and IPPU) emissions grew at a CAGR of 6.4% between 2005 and 2015. In absolute terms, manufacturing emissions rose from 341 million tonnes (MT) of carbon dioxide equivalent (CO₂e) in 2005 to 635 MTCO₂e in 2015. The emissions from energy use constituted \sim 70% of total emissions during the period.
- CO₂ is the major contributor to manufacturing emissions (energy-use and IPPU), representing a share of nearly 98%. The other greenhouse gases are (CH_4 and N_2O).
- Over the same period, the manufacturing sector's Gross Value Added at basic prices (at 2011-12 constant prices) grew at a CAGR of 8% (MOSPI 2018), thus indicating an emissions intensity reduction of 14% when compared to 2005 levels (refer to Annexure 1).
- Iron and steel, non-metallic minerals, petroleum refining and non-ferrous metal sectors together represent a share of 80% in total energy use emissions for 2015. Odisha, Gujarat, Chhattisgarh, Karnataka and Jharkhand were among top five emitters representing more than 50% of the fuel derived emissions in 2015. Coal and lignite continue to drive 75% to 80% of the overall energy-use emissions.
- IPPU emissions increased from 101 MTCO₂e to 175 MTCO₂e at a CAGR of about 5.6% between 2005 and 2015. Cement, ammonia and iron & steel production together contributed to more than 80% of process emissions in 2015. Gujarat, Rajasthan, Andhra, Uttar Pradesh and Maharashtra were among the leading emitters at the sub-national level in 2015. Cement production alone represents 60% of the total IPPU emissions throughout the time series.

ES 1. Background information of GHG emission estimates

The GHG emissions from the manufacturing sector in 2015 is 635 MTCO_{2e} . Out of which, energy use emissions represented 460 MTCO₂e and IPPU represented 175 MTCO₂e. Table ES 1 below

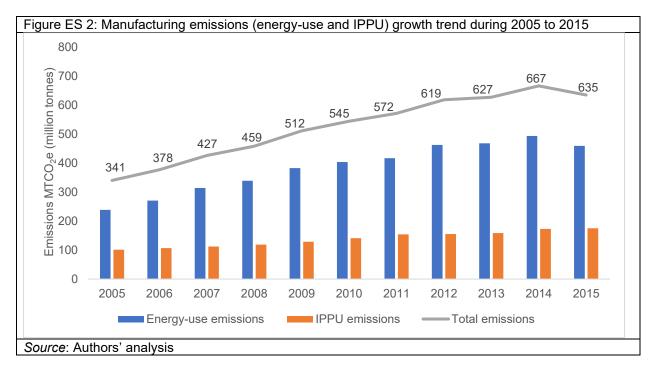

	Kan Oanna actorian		GHG Emiss	ions (2015)	
IPCC ID	Key Source category	MTCO ₂	MTCH₄	MTN ₂ O	MTCO ₂ e
1A	Fuel combustion activities	458	0.01	0.01	460
1A1	Energy industries	61	0.00	0.00	61
1A1b	Petroleum refining	53	0.00	0.00	53
1A1ci	Manufacture of solid fuels	2	0.00	0.00	2
1A1cii	Other energy industries	6	0.00	0.00	6
1A2	Manufacturing industries and construction	397	0.00	0.01	399
1A2a	Iron and steel	193	0.00	0.00	194
1A2b	Non-ferrous metals	46	0.00	0.00	47
1A2c	Chemicals and fertilisers	37	0.00	0.00	37
1A2d	Pulp, paper and print	13	0.00	0.00	13
1A2e	Food processing, beverages and tobacco	9	0.00	0.00	9
1A2f	Non-metallic minerals	74	0.00	0.00	74

provides a gas wise emission break-up of the numbers.

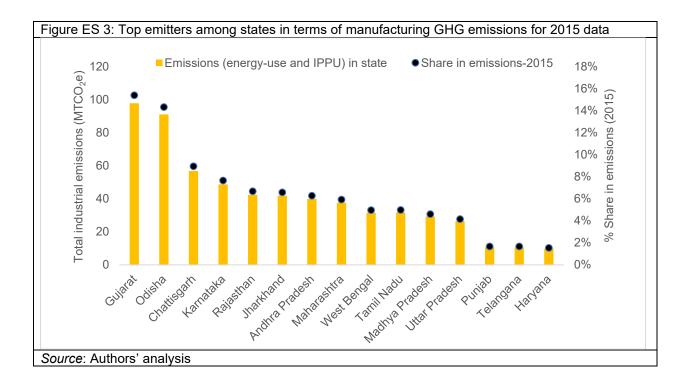
1A2g	Transport equipment	2	0.00	0.00	2
1A2h	Machinery	3	0.00	0.00	3
1A2i	Mining and quarrying	0	0.00	0.00	0
1A2j	Wood and wood products	0	0.00	0.00	0
1A2k	Construction	0	0.00	0.00	0
1A2I	Textile and leather	16	0.00	0.00	17
1A2m	Non-specified industry	3	0.00	0.00	3
2	IPPU	167	0.38	0.00	175
2A	Mineral industry	116	0.00	0.00	116
2B	Chemical industry	33	0.38	0.00	41
2C	Metal industry	12	0.00	0.00	12
2D	Non-energy products from fuels and solvent use	6	0.00	0.00	6
Source: Au	ithors' analysis				

ES 2. Summary of GHG sources and sinks

A closer look at the GHG emission trends over a period of ten years (2005 to 2015) indicates that the share of emissions from the various sub-sectors remained constant. Energy-use and IPPU emissions from iron and steel (32%), non-metallic minerals, dominated by cement manufacturing (30%), chemical and fertilizers (12%), refining, other energy industry and solid fuel manufacturing (10%), non-ferrous metals (9%), and textile and leather industry (3%) represented 95% of the manufacturing emissions denoting them as key categories within the manufacturing sector emissions (Figure ES 1).



Both, cement and steel manufacturing embody an energy intensive process, and are largely reliant on coal for process heat requirements. Further, these sectors are anticipated to have a


strong growth outlook in the future as the present per-capita consumption levels from these two sectors still remain low when compared to the global averages. The per capita steel consumption in India is very low at 65kg compared to the world average of 214kg (World Steel Association 2018). Similarly, India's per capita cement consumption is very low at 190kg compared to world average of 350kg (IBEF 2017).

ES 3. Summary of GHG trend

The overall manufacturing sector (combined energy use and IPPU) emissions increased from 341 MTCO₂e in 2005 to 635 MTCO₂e in 2015 at a CAGR of 6.4%. While, energy use emissions alone increased at a CAGR of 6.8%, IPPU emissions increased at a CAGR of 5.6%. Energy use emissions consistently contributed to more than 70% of the total emissions throughout the time period. Figure ES 2 below, shows the disaggregation of total emissions into energy use and IPPU emissions between 2005 and 2015.

Manufacturing activities are not uniformly spread across the states. It is largely a function of resource proximity, energy price, land availability and states' policies towards doing business. Figure ES 3 illustrates the major states in terms of GHG emissions from manufacturing sector for 2015. Comparing these recent numbers with the earlier estimates (2005 to 2013 series) show that the top emitters have remained the same, with Gujarat leading the emission charts.

1. Introduction and background

1.1 Context

The objective of this methodology note – in continuation to our previous estimates (2005 to 2013 series)¹ – is to provide an updated and improved analysis of India's GHG emissions arising out of manufacturing sector. This study contributes to the broader mission of the *GHG Platform India*, a civil society-led initiative, of presenting independent research and analysis on India's GHG emissions and inform the policy discourse around it. The ultimate vision is to establish a transparent and independent source of credible information which would assist policy planners in identifying and optimizing efforts to mitigate GHG emissions across economic activities.

The reported estimates communicate annual manufacturing emissions starting from 2005 till 2015 on a calendar year basis. Appropriate improvements have been introduced in the present assessment approach, including an update in emission factors for key categories sourced from India's second Biennial Update Report (BUR). Hence, recalculations for the previously reported phase has been performed and reported through this update.

This methodology note, in continuation of its previous versions provides the most comprehensive and detailed outline of emission trends over a period of time across the states and sub-sectors within the manufacturing sector.

1.2 GHG coverage

This study covers three key greenhouse gases, namely - carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). These three gases collectively account for a large share of anthropogenic emissions from India. 2006 IPCC guidelines for the national GHG inventories cover many more gases (or group of gases) having relatively very high global-warming potential (GWP), such as: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6), etc. (collectively known as *F*-gases). This study does not cover *F*-gases, as their total contribution is known to be very small (or unmeasured) in India for the period under investigation. The Global Warming Potential (GWP) of the above-mentioned gases have been taken from IPCC's second assessment (SAR) and fifth assessment (AR5) reports. Table 1.2 A below lists the GWP values as per the two reports used for our analysis.

Name of the gas	Formula	Global W	/arming Potential (GWP)
		SAR	AR5
Carbon dioxide	CO ₂	1	1
Methane	CH ₄	21	28
Nitrous oxide	N ₂ O	310	265

¹ Refer GHG Platform India for previous versions at: <u>http://www.ghgplatform-india.org/industry-sector</u>

1.3 Key economic sectors covered

Majority of GHG emissions from manufacturing is from combustion of fuels, both for process heating, as well as power generation for self-consumption (captive power production). Nonenergy use of fuels (as feedstock or raw material) can also result in GHG emissions from specific manufacturing processes. Here, chemical or physical transformation of materials, result in the emission of GHGs. Such emission sources are commonly referred to as 'Industrial Process and Product Use (IPPU)'. The entire reporting on manufacturing emissions follows the hierarchy as reported in IPCC 2006 guidelines for national GHG inventories barring few limitations that arises from the lack of, or access to adequate information on activity data.

The overall scope of this study covers - manufacturing industries and construction (1A2)²; energy industries for petroleum refining and manufacturing of solid fuels (1A1b & 1A1ci); mining and hydrocarbon extraction (1A1cii); and, industrial process and product-use emissions (2A, 2B, 2C, 2D)³. IPPU emissions arising from 2B9, 2B10, 2D3, 2E, 2F, 2G, and 2H categories⁴ from the IPCC classification have been excluded from the scope as little or no information is publicly available for such manufacturing activities, many of which has not even existed in India until 2010-11.

1.4 Boundary of GHG estimates

This note illustrates a bottom-up accounting approach, providing a detailed overview of manufacturing emissions at the sub-national as well as sub-sectoral level. The Annual Survey of Industries (ASI) unit level database is the primary source of information that is maintained and disseminated by the Ministry of Statistics and Programme Implementation (MoSPI). ASI reportedly covers only the formal sector manufacturing activity in India, as defined under the Factory Act, 1948 and represents about 75% of the energy consumption in the entire manufacturing sector. This represents all states and union territories in India except Mizoram and Lakshadweep due to unavailability of underlying industrial activity data. All forms of primary energy (including both direct thermal application and further conversion) are considered for energy-use emission estimates. Similarly, carbonaceous materials' consumption and production output (in physical units) as reported by the factories, are considered for IPPU estimates.

1.5 Reporting Period

The reported estimates communicate annual manufacturing emissions starting from 2005 till 2015 on a calendar year basis. 2005 is the base year identified by India in its first Nationally Determined Contributions (NDC) for post 2020 emission reduction targets; whereas, 2015 was the latest year for which activity data is available from the annual survey of industries database during the time of the study.

1.6 Outline of GHG estimates

This study provides an in-depth assessment of greenhouse gas (GHG) emissions from the manufacturing sector (including construction) in India. Manufacturing here refers to the firms coming from the formal sector only, i.e. registered under sections 2m(i) and 2m(ii) of the Factories Act, 1948. This methodology note provides information on activity data collection sources and

³ 2A: Mineral Industry, 2B: Chemical Industry, 2C: Metal Industry, 2D: Non-Energy Products from Fuels and Solvent Use; No information is available on industryspecific solvent use (2D3), hence not accounted

² The representation within parentheses refers to the IPCC classification of these sectors and emissions categories

⁴ 2E: Electronics Industry, 2F: Product Uses as Substitutes for Ozone Depleting Substances, 2G: Other Product Manufacture and Use, 2H: others.

proxies, assumptions and correction measures undertaken on the activity data to improve its quality. Further, it lists the tier approach followed for every IPCC category depending on the availability of emission factors. It provides a detailed methodology used to arrive at emissions estimates. The study lists the source and quality of the activity data for every IPCC category. It further details the uncertainties, if any, in the estimation processes; measures undertaken for quality control; details on difference in calculation of emission estimates as compared to previous (Phase 2) estimates; recommendations for policy-makers on improving the quality of data; and finally, a comparison with available national level emission estimates.

1.7 Institutional information

The Council on Energy, Environment and Water (CEEW) (<u>https://www.ceew.in/industrial-sustainability-competitiveness</u>) leads the estimation and reporting of the manufacturing sector emission estimates. A team of four researchers at CEEW, alongside support staff, were responsible for the entire effort behind estimating manufacturing-sector emissions. A brief description of their roles and responsibilities is provided below:

Vaibhav Gupta

Vaibhav is an environmental engineer and policy specialist, who examines and analyses the manufacturing sector via the lens of climate change, energy, and resource security. He was the principle investigator for the industry sector emissions and developed the bottom-up estimation approach in consultation with other team members.

Tirtha Biswas

Tirtha is a policy analyst, working on the development of sustainable and competitive pathways for Indian industries to support its low-carbon growth aspirations. In this effort, he played a very crucial role of translating the approach into feasible outcomes by testing out several scenarios and logics using statistical tools and excel based models.

Deepa Janakiraman

Deepa works as a research analyst at CEEW. She is an economist by training. In this research, she assisted the team with data analysis and drawing emission trends across sectors and states for valuable policy insights.

Karthik Ganesan

An engineer by training, Karthik leads The Council's work on the Power Sector and Industrial Sustainability and Competitiveness in his capacity of Research Fellow. In this research, he supervised the entire set of activities, managed resources and ensured quality of final outcomes through an internal review and assessment process.

1.8 Data collection process and storage

Annual Survey of Industries (ASI) conducted by the Ministry of Statistics and Programme Implementation (MoSPI) forms the core activity data of this research. It is a mix of census (for large firms) and sample survey covering the formal manufacturing sector in India. It is by-far the most exhaustive and periodic data set available for Indian manufacturing on a yearly basis. The prime objective of the ASI data set is to provide insights into the economic aspects of the manufacturing sector by capturing attributes of factories/ units such as value addition, employment, capital investments, etc. However, it also captures information on energy-use by industries, though not in a manner that is entirely suitable for the purposes of this study. The data

has been procured from MoSPI by paying an administrative fee. Annexure 2 provides a quick view of the activity-wise data sources availed for presented estimates.

A transparent inventory process requires an effective data management process to enable users to reproduce emission estimates from the scratch. This needs a systematic data-archiving system. In this case, ASI datasets form the backbone of the entire estimation procedure as an underlying activity data. MoSPI follows a sound practice of recordkeeping and archiving, which makes data available, from early as the 1980s at any point of time upon request to the ministry. All the other sources of information, such as Indian Bureau of Mines (IBM), Cement Manufacturers Association (CMA), Ministry of Coal (MoC), etc. also provide archived information through the publications available on their website. Further, CEEW has a robust archiving and version control process for the estimates made using the activity data. We maintain a separate directory having separate folders and additional backups for each year covered in the analysis. The updates made to the methodology and estimates are done using a version control to enable tracking of the updates or a roll back to a previous version. As mentioned earlier a comprehensive disclosure on the correction measures made by CEEW through this publication and supporting datasheets to enable reproduction of this analysis independently by the users.

1.9 Quality control (QC) and quality assurance (QA)

Since the estimation of GHG emissions from economywide sectors is undertaken by different partners at the platform, ensuring quality control becomes one of the key factors to make the published datasets reusable. The aim of the platform is to provide activity data as well as emission estimates in a form that can be interpreted and used by audiences fairly easily. For this purpose, the platform undertakes certain quality control measures. Some of them are as follows:

- Standardized worksheets containing emission estimates and activity data across the sectors.
- Transparency in reporting all conversion factors used to arrive at emission estimates.
- Uniform abidance to the IPCC 2006 guidelines for the estimation of emissions.
- Citation of all external data used along with source links.
- Providing estimates using GWP numbers from both SAR as well as AR5.
- Multiple checks of activity data to ensure consistency of results.
- Providing detailed methodology to facilitate recalculation of emissions by end user.
- Ensuring consistency in units of reporting across fuel categories throughout the process of estimation.
- Transparent disclosure of recalculations (from previous estimates) and reasons for variation in estimates.
- Proper archiving of all estimates to keep the data accessible.
- Making the data easily accessible through distinct sector pages on the platform's website.

Quality Assurance is maintained through a thorough peer review process undertaken by the platform. This review is done by personnel not involved in the estimation process. The review analyses the entire estimation process and reverts with improvements and suggestions that are then addressed by the relevant partners. Further, the platform meets at regular intervals to ensure communication and information sharing among all partners.

In continuation to previous efforts, authors of this methodology note have standardized a process incorporating suitable checks and correction measures in the raw (unit level) data obtained from the Ministry. As quality check, all such correction measures have been duly discussed with renowned statisticians and MoSPI officials over the past two years.

Where necessary, alternative sources of information (activity data) were used to substantiate the assumptions and fill information gaps within the ASI datasets. For most years, IPPU related activity data was found to be sparsely available from the ASI, especially with cement, construction and ferro-alloys production activities.

1.10 General assessment of completeness

Since the method of estimating GHG emissions from formal manufacturing enterprises is primarily dependent on the ASI dataset and other reliable government data sources, certain categories have been excluded from the estimation either because little or no data was available for the same. A list of these categories can be found in Table 1.10 A. Further, the analysis covers three main greenhouse gases: CO_2 , CH_4 and N_2O and does not cover these F-gases, as their total contribution is known to be very small (or unmeasured) in India for the period under investigation.

Table 1.10 A: Det	Table 1.10 A: Details of key source categories excluded from present GHG estimates								
Sector	IPCC ID	Category description	Reason for exclusion						
	1A1a	Main Activity Electricity and Heat production (utility + captive)	Beyond current scope						
Energy	1A3	Transport	Beyond current scope						
	1A4	Other sectors	Beyond current scope						
	1A5	Non-specified	Beyond current scope						
	2B9	Fluorochemical Production	Limited information						
	2B10	Other	Limited information						
	2C2	Ferroalloys Production	Limited information						
IPPU	2E	Electronics Manufacturing	Limited information						
	2F	Product Uses as Substitutes for Ozone Depleting Substances	Limited information						
	2G	Other Product Manufacture and Use	Limited information						
	2H	Other	Limited information						
Source: Authors'	compilation		•						

2. Trends in GHG emissions

2.1 Trend in aggregated GHG emissions (energy-use and IPPU)

This section illustrates trends across the manufacturing sectors, states and fuel categories associated with the estimated emissions for the period 2005 - 2015.

Figure 2.1 A shows India's manufacturing sector GHG emission estimates in terms of carbon dioxide equivalent (secondary axis). Overall emissions have grown linearly at a CAGR of 6.4%. A slight dip in the terminal year (2015) is a reflection of insufficient activity data and is not the impact of decarbonisation measures taken up by manufacturing units as part of a policy drive or voluntarily. A dip in energy expenditure was observed across a majority of the enterprises in the ASI dataset, whereas their output increased when compared to the previous year. However, this trend can only be validated once the data for the subsequent year is analysed.

At the sectoral level, combined emissions from iron and steel and non-metallic minerals (primarily cement manufacturing) represents almost 60% of the overall manufacturing sector emissions, as shown by the primary axis of Figure 2.1 A.

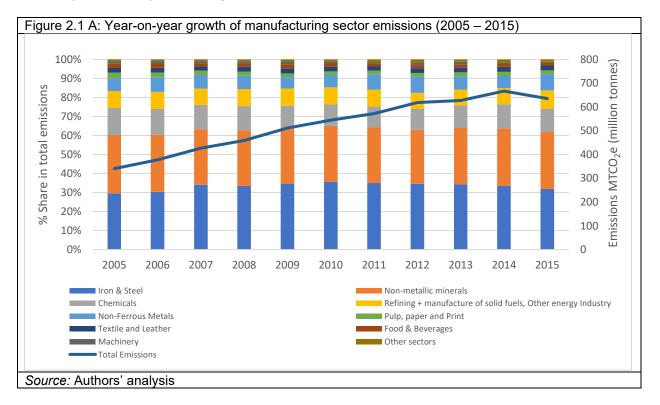
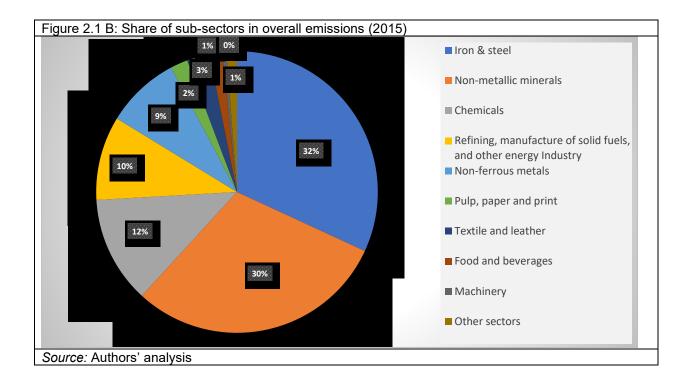



Figure 2.1 B shows how different sectors contributed to the overall emissions in 2015. The contribution of iron and steel and non-metallic minerals (mainly cement production) in terms of both energy-use and process emissions accounted for more than 60% of the total emissions.

Total emissions grew by 87% from 341 MTCO₂e in 2005 to 635 MTCO₂e in 2015. The absolute growth of energy use emissions (92%) was more than that of IPPU emissions (72%). Also, the annual growth rate of total manufacturing sector emissions was much higher between 2005 and 2010 (10%) than between 2010 and 2015 (3%). Table 2.1 A shows the percentage increase in manufacturing sector emissions at three different points in the time series compared to baseline emissions in 2005.

Table 2.1 A: Total national GHG emission estimates from the manufacturing sector											
Category	GHG emissions (MTCO ₂ e)				%increase						
	2005	2007	2010	2015	2005-2007	2005-2010	2005-2015				
Energy-use	239	314	404	460	31%	69%	92%				
Industrial Processes & Product Use	101	112	141	175	10%	38%	72%				

2.2 Trend in GHG emissions by type of GHG

Emissions from carbon dioxide (CO₂) constitute majority of the emissions in both energy-use and IPPU estimates. While CO₂ contributed to 99% for energy-use emissions, it contributed to 95% of IPPU emissions in 2015. Among the other gases, methane (CH₄) and nitrous oxide (N₂O) contributed to 0.03% and 0.4% of energy-use emissions in the same year. In case of IPPU emissions, CH₄ contributed to 4% of the emissions while N₂O contributed to 1% of the emissions. However, the IPPU emissions arising from CH₄ and N₂O are primarily from the chemical industries. Table 2.2 A below displays share of emissions from the three gases in total emissions for both energy-use and IPPU for the year 2015.

Table 2.2 A: Distribution of GHG emissions (2015)	(energy-use and IF	PU) contribution from	n major gases						
Category Without AFOLU									
Category	%CO2	%CH4	%N2O						
1. Energy use	99.57	0.03	0.40						
2. Industrial Processes & Product Use95.284.580.1									
Source: Authors' analysis									

2.3 Key drivers of the emission trends in various sectors

Energy-use:

- The major sectoral drivers for energy emissions are from iron and steel, non-metallic minerals, petroleum refining and non-ferrous metals. Together they contributed to about 80% of the emissions in 2015, with iron and steel alone representing a share of 42%. The emissions from the sub-sector has more than doubled in the time period from 95 MTCO₂e to 194 MTCO₂e.
- At the national level, coal (use) continues to be the dominant source of energy across the sectors. Hence, its share in the energy derived emissions grew from 180 MTCO₂e in 2005 to 366 MTCO₂e in 2015; i.e. nearly 80% of the total energy-use emissions.

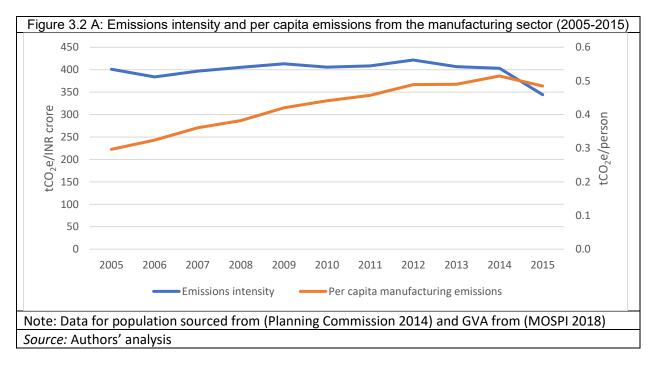
IPPU:

- The major driver for industrial processes and product use is the emissions arising from cement production. It has consistently contributed to about 60% of the total IPPU emissions between 2005 and 2015. It has increased from 58 MTCO₂e to 113 MTCO₂e, representing an absolute increase by 95% during the period.
- The other drivers of IPPU emissions are ammonia production and iron and steel production.

3. Industrial energy-use and IPPU

3.1 Overview of the sector

Between 2005 and 2015, Greenhouse gas emissions (GHG) from the manufacturing activities in India have increased at a rate of 6.4% (CAGR); i.e., rising from ~ 341 MTCO₂e in 2005, to ~ 635 MTCO₂e in 2015. The emissions estimates include emissions arising from captive power generation for all the manufacturing sectors. An overview of the GHG emissions is shown in the Table 3.1 A.


Table 3.1 A: Comparison of GHG emissions estimates between base year and cu GWP – SAR IPCC Source Category							AR5
IPCC ID	Source Category	2005	2015	% change	2005	2015	% change
1A	Fuel combustion activities	239	460	92%	239	459	92%
1A1	Energy industries	30	61	102%	30	61	102%
1A1b	Petroleum refining	26	53	107%	26	53	107%
1A1ci	Manufacture of solid fuels	1	2	273%	1	2	273%
1A1ci i	Other energy industries	4	6	43%	4	6	43%
1A2	Manufacturing industries and construction	209	399	91%	208	398	91%
1A2a	Iron and steel	95	194	103%	95	194	103%
1A2b	Non-ferrous metals	19	47	142%	19	47	142%
1A2c	Chemicals and fertilisers	17	37	121%	17	37	121%
1A2d	Pulp, paper and print	10	13	27%	10	13	27%
1A2e	Food processing, beverages and tobacco	7	9	29%	7	9	29%
1A2f	Non-metallic minerals	45	74	65%	45	74	65%
1A2g	Transport equipment	2	2	32%	2	2	32%
1A2h	Machinery	4	3	-30%	4	3	-30%
1A2i	Mining and quarrying	0	0	230%	0	0	230%
1A2j	Wood and wood products	0	0	13%	0	0	13%
1A2k	Construction	0	0	0%	0	0	0%
1A2I	Textile and leather	8	17	95%	8	17	95%
1A2m	Non-specified industry	1	3	252%	1	3	252%
2	IPPU	101	175	73%	103	178	73%
2A	Mineral industry	59	116	95%	59	116	95%
2B	Chemical industry	32	41	29%	33	44	32%
2C	Metal industry	7	13	81%	7	13	81%
2D	Non-energy products from fuels and solvent use	3	6	77%	3	6	77%

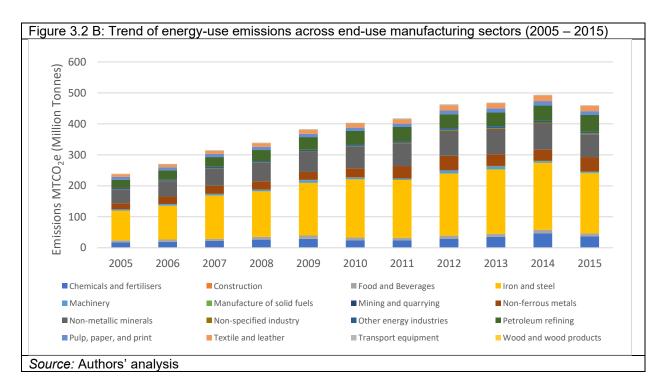
Source: Authors' analysis

The AR5 values for GWP of gases are from the fifth assessment report of IPCC which SAR values are from the second assessment report. Throughout the document, emissions calculated using the SAR values have been used for trend analysis and other analysis.

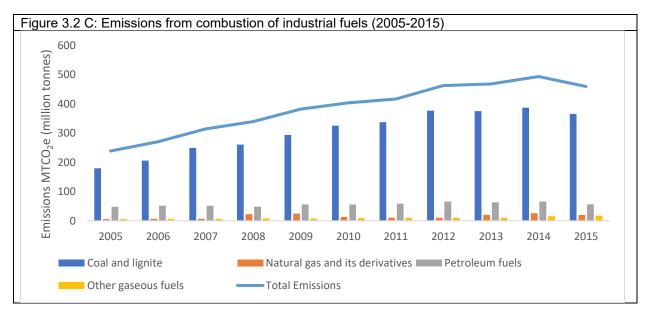
3.2 Analysis of sectoral emissions

The per capita manufacturing emissions have witnessed an increase of 5% annually over the time period. A comparison with the gross value added of India further reveals a negligible reduction in emissions intensity of the manufacturing sector, decreasing with a rate of 2% annually. Figure 3.2 A displays the trends in manufacturing emissions intensity and per capita emissions between 2005 and 2015.

A sectoral breakdown of emissions (energy-use and IPPU) from the manufacturing sector is provided in Table 3.2 A below.


Table 3. SAR	2 A: Sectoral break	down o	f manuf	acturin	g emis	sions ((2005 t	o 2015	5) in M	TCO2e	using	IPCC
IPCC code s	Sector/Subsecto r - as per IPCC, 2006 classification	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
1A1	Fuel Combustion Activities > Energy industries	30	34	36	40	46	49	51	52	52	57	61
1A1a	Main activity electricity and heat production (utility + captive)		Reported Elsewhere (Refer: GHG Platform India)									

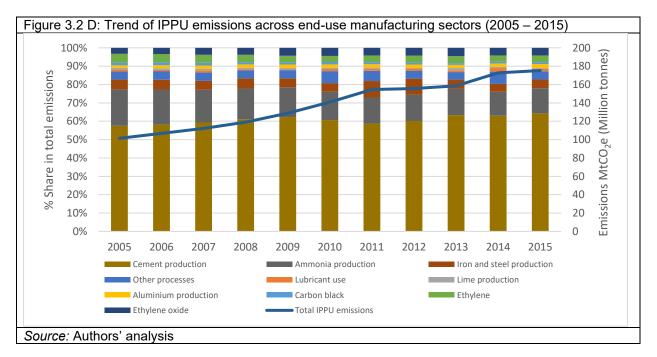
	ons (energy-use PU, excluding city)	341	378	427	459	512	545	572	619	627	667	635
2D	Non-energy products from fuels and solvent use	1	1	1	1	1	2	2	2	2	4	3
2C	Metal industry	9	10	10	12	12	12	20	20	14	14	16
2B	Chemical industry	32	32	33	33	35	37	39	39	39	39	41
2A	Mineral industry	59	64	68	74	82	90	93	95	104	116	116
1A2m	Non-specified industry	1	1	1	1	2	2	2	3	3	3	3
1A2I	Textile and leather	8	9	10	12	13	13	13	16	15	17	17
1A2k	Construction	0	0	0	1	0	0	0	0	0	0	(
1A2j	Wood and wood products	0	0	0	0	0	0	0	0	0	0	(
1A2i	Mining (excluding fuels) and guarrying	0	0	0	0	0	0	0	0	0	0	(
1A2h	Machinery	4	5	5	5	9	5	4	9	9	5	;
1A2g	Transport equipment	2	1	2	2	2	2	3	4	3	3	
1A2f	Non-metallic minerals	45	50	56	60	66	71	74	81	82	84	74
1A2e	Food processing, beverages and tobacco	7	8	7	8	11	9	9	10	10	12	ę
1A2d	Pulp, paper and print	10	10	10	10	10	11	11	12	14	15	13
1A2c	Chemicals and fertilisers	17	19	22	27	29	24	24	30	36	46	37
1A2b	Non-ferrous metals	19	24	26	27	25	29	40	46	38	36	47
1A2a	Iron and steel	95	109	140	147	170	187	186	201	207	216	194
1A2	1A2: Manufacturing industries and construction	209	237	278	299	337	355	366	412	417	437	399
1A1cii	Other energy industry	4	4	4	4	4	5	5	5	5	5	(
1A1ci	Manufacture of solid fuel	1	0	1	1	1	1	1	1	2	2	2
1A1b	Petroleum refining	26	30	32	36	41	43	46	45	45	50	53


Energy-use emissions

Energy-use emissions are the major contributor to the manufacturing sector emissions. Between 2005 and 2015, energy use emissions contributed ~ 70% of total sectoral emissions. At the subsector level, iron and steel production was the single largest contributor, representing a share of 44% in the total energy use emissions. It is followed by non-metallic minerals (17%), petroleum refining (10%), non-ferrous metals (8%), and chemical and fertilisers (7%). Figure 3.2 B portrays

sector wise split across energy use emissions, which has remained almost constant (in terms of sectoral share) over the assessment period.

At the national level, coal (use) continues to be the dominant source of energy across the sectors. Hence, its share in the energy derived emissions grew from 180 MTCO₂e in 2005 to 366 MTCO₂e in 2015; i.e. nearly 80% of the total energy-use emissions. Figure 3.2 C shows the energy-use emissions from consumption of different fuels. It is observed that, the increase in India's manufacturing emissions is primarily driven by increase in coal consumption. This is also evident from the fact that the fuel mix of manufacturing industries has remained relatively constant during the period.

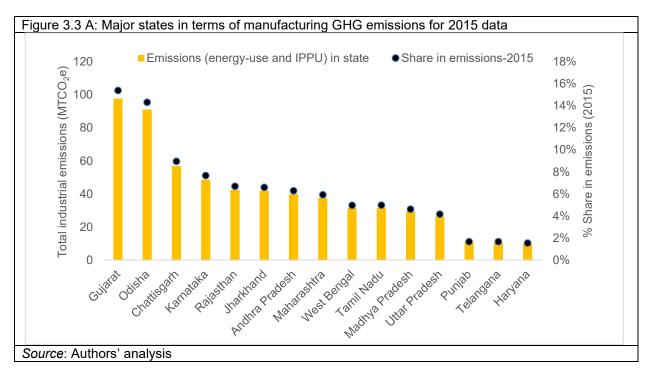


Source: Authors' analysis

Iron and steel and non-metallic industries (mainly cement) are heavily dependent on coal. National statistics indicate the iron & steel and cement manufacturing to be the second and third major consumers after thermal power generation (MoSPI 2018). Among all states, for their manufacturing operations (including captive power generation), Odisha has the largest share of coal-based emissions at 22% of country's total coal derived manufacturing emissions in 2015. It is followed by Chhattisgarh (13%), Gujarat (11%), Jharkhand (9%), and Karnataka (9%) for the same year.

IPPU emissions

Similarly, IPPU emissions are largely driven by cement production process (Figure 3.2 D). Cement manufacturing consumes more than 90% of total limestone/dolomite produced in the country (IBM 2015) and as a result contributes to more than 60% of total IPPU related emissions through most years.



India ranks second globally in absolute consumption of nitrogenous fertilizers (FAO 2009) and on account of this, the production of fertilizer accounts for a large share of emissions. For the year 2015, fertilizer production (read as ammonia production) contributes to around 14% of total IPPU emissions.

Although, the specific requirement of carbonaceous material in iron and steel production is less than cement production, ever increasing demand of steel in India has driven the emissions from this sector to be the third largest. Process emissions from iron and steel contribute nearly 5% of overall IPPU related emissions in 2015.

3.3 State-wise analysis of emissions

State level GHG emission accounting suggests that ~82% of manufacturing emissions (including process emissions) comes from only ten states, i.e. Gujarat (15%), Odisha (14%), Chhattisgarh (9%), Karnataka (8%), Rajasthan (7%), Jharkhand (7%), Andhra Pradesh (6%), Maharashtra (6%), West Bengal (5%) and Tamil Nadu (5%). Figure 3.3 depicts absolute emissions from the top emitting states (primary axis) and the order of their share in emissions (secondary axis).

Interestingly, among top five emitters, coal dominates industrial energy-use emissions with more than 75% share in each of them, except Gujarat (61%) which is the top emitter. This shall be explained by the highest share of natural gas derived emissions in Gujarat (33% of national) alongside of highest emissions from liquid fuels (at 32%) and third highest share of coal-based manufacturing sector emissions (12% of country's total).

3.3 Sectoral quality control (QC) and quality assurance (QA)

The entire process of preparation, assessment, and reporting of GHG emission inventory for manufacturing sector involves procurement of data/information from several ministries largely made available in the public domain. Indeed, across various data sources, there are numerous challenges such as data consistency, timeliness/periodicity, quality of information, coverage of sectors, etc. Hence, a quality control (QC) approach was developed and followed over a period of time. It is largely based on experiences gathered from previous reporting and subsequent feedback from national experts. The QC approach involves cross validation of information from alternative sources, expert consultations on assumptions and extrapolations, comparison with other independent estimates, etc. Sector specific QC was performed through expert consultations, regional workshop and interactions with relevant ministries.

Further, other quality control measures such as ensuring consistency in conversion factors throughout the estimation process and across manufacturing sub-sectors, proper archiving of data, transparency in disclosure of emissions factors and other conversion factors used,

disclosing detailed methodology and good practices methodology from IPCC 2006 guidelines have been followed.

Quality assurance (QA) was performed was performed through in-house experts who are not involved in the estimation process. This also includes feedback and interactions with the MoEFCC during the preparation of India's formal GHG inventory estimates. Moreover, consistency with emission estimates and periodic consultations with reviewers over the last two years has provided depth to the QA process.

3.4 Key source category [1A1b, 1A1c, 2A: energy-use emissions]

3.4.1 Category description

Key category analysis is very useful to identify the emission sources having significant impact on the total emissions represented by each broader category. It helps in prioritizing key sectors for application of higher tiers, as well as adding stringent quality control (QC) and quality assurance (QA) measures. Hence, lead to reduction in uncertainties in the overall emission estimates (MoEFCC 2018).

Table 3.4 A features key source categories for the activity data used in the energy-use emission estimations. It further highlights the indicative quality of the data sources referred for each category. Refer Annexure 2 and Annexure 3 for detailed information of data sources and emissions factors used across the manufacturing sources.

Data quality has been marked high/medium/low depending upon consistency, accuracy, and completeness of the information. Wherever, the data is consistent (temporal variation) and complete throughout the reported period (2005 - 2015), it has been assigned 'high' quality impression. If the data is found inconsistent over the analyzed timeframe, or is modelled using suitable assumptions, it is considered to be of 'medium' quality. Wherever, average representative factors were used to derive activity data, quality is considered to be 'low' to reflect a further scope of improvement.

Table 3.4	Table 3.4 A: Category wise source and quality of activity data for energy-use emissions							
IPCC ID	GHG Source and Sink Categories	Туре	Quality	Source				
1	Energy							
1A1	Fuel Combustion Activities							
1A1b	Petroleum refining	Secondary	High	MoP&NG				
1A1ci	Manufacture of solid fuel	Secondary	Medium	ASI				
1A1cii	Other energy industry*	Jy Secondary Low		MoP&NG, SCCL Annual Reports				
1A2	Manufacturing Industries and Construction							
1A2a	Iron and steel	Secondary	High	ASI				

1A2b	Non-ferrous metals	Secondary	High	ASI			
1A2c	Chemicals and fertilisers	Secondary	High	ASI			
1A2d	Pulp, paper and print	Secondary	Low	ASI			
1A2e	Food processing, beverages and tobacco	Secondary	Medium	ASI			
1A2f	Non-metallic minerals	Secondary	High	ASI			
1A2g	Transport equipment	Secondary	High	ASI			
1A2h	Machinery	Secondary	High	ASI			
1A2i	Mining (excluding fuels) and quarrying	Secondary	Low	ASI			
1A2j	Wood and wood products	Secondary	Medium	ASI			
1A2k	Construction			ASI			
1A2I	Textile and leather	Secondary	High	ASI			
1A2m	Non-specified						
	: Includes emissions from energy use in coal mining and oil & gas extraction Source: Authors' analysis						

Most of the 'low/medium' quality source categories in Table 3.5 A are known to be contributing incomparably lower emissions than the high-quality source categories for energy-use emissions. Moreover, data quality issues arise predominantly due to certain fuel types (example: poor reporting of natural gas in the earlier years) across all sectors. Total share of energy-use emissions represented by low to medium quality categories is 7% contributed by pulp, paper and print; and, food processing, beverages and tobacco, wood products, mining, manufacturing of solid fuels, and non-specified industry categories.

3.4.2 Methodology

The simple manner of calculating the emissions is multiplying activity data with the associated emission factor. The emissions factors are driven by attributes such as calorific value, carbon content associated with fuels, extent of combustion, etc. whereas, activity data is a function of energy used for combustion process, and/or the amount of carbonaceous material entering a system. These could be directly specified or computed based on overall production or input materials consumed.

In this study, the energy-use emission estimates find activity data at the unit level of manufacturing establishments, as captured by the ASI every year. In IPPC terminology, activity data sourced from ASI shall be designated as Tier-3 level of information, which is the most accurate understanding of any manufacturing operation. IPCC lists out three level of tiers for the activity data, and emission estimation methodology. Each tier differs from the other based on the origin and quality of underlying information. Tier-1 methodology employs the default emission factors and other parameters as provided by IPCC, whereas Tier-2 represents an average country specific representation of the various fuel characteristics and prevalent technologies. Tier-3

represents greater level of details with more complex and site-specific data. Emission factors could either be country specific, or as per the prescription of IPCC guidelines. Table 3.4 B indicates the choice of tiers made for arriving at the emission estimates. Segregated information on the use of imported vis-à-vis domestic fuel across a wide-range of fuel-types is an additional advantage bringing more accuracy with the choice of emission factors, and hence improved emission accounting. Unit-level information is used to generate aggregate emissions at the sectoral, state and the national level.

IPCC	GHG source & sink	CO2		CH4		N2O				
ID	categories	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor			
1A1	Energy industries									
1A1b	Petroleum refining	T2	CS, D	T2	CS, D	T2	CS, D			
1A1ci	Manufacture of solid fuels	T1	D	T1	D	T1	D			
1A1cii	Other energy industries	T1	D	T1	D	T1	D			
1A2	Manufacturing indus	tries and o	constructior	1						
1A2a	Iron and steel	T2	CS, D	T2	CS, D	T2	CS, D			
1A2b	Non-ferrous metals	T2	CS, D	T2	CS, D	T2	CS, D			
1A2c	Chemicals	T2	CS, D	T2	CS, D	T2	CS, D			
1A2d	Pulp, paper and print	T2	CS, D	T2	CS, D	T2	CS, D			
1A2e	Food processing, beverages and tobacco	T2	CS, D	T2	CS, D	T2	CS, D			
1A2f	Non-metallic minerals	T2	CS, D	T2	CS, D	T2	CS, D			
1A2g	Transport equipment	T2	CS, D	T2	CS, D	T2	CS, D			
1A2h	Machinery	T2	CS, D	T2	CS, D	T2	CS, D			
1A2i	Mining (excluding fuels) and quarrying	T2	CS, D	T2	CS, D	T2	CS, D			
1A2j	Wood and wood products	T2	CS, D	T2	CS, D	T2	CS, D			
1A2k	Construction	T2	CS, D	T2	CS, D	T2	CS, D			
1A2I	Textile and leather	T2	CS, D	T2	CS, D	T2	CS, D			
1A2m	Non-specified industry	T2	CS, D	T2	CS, D	T2	CS, D			

Table 3.4 B: Tier approach followed for the manufacturing sector emission (Energy-use and IPPLI)

Activity data and emission factor(s)

In this study, across the three major fuel groupings (solid, liquid, gaseous) more than 80 variants/distillates have been considered as reported by the sector through ASI unit level data. Annexure 3 depicts each and every fuel variant considered for the emission estimates. ASI allows industries to report 'biomass' within the 'other fuel' category, unless they choose to specify its reporting in the major fuel categories. Any use of biomass is considered to be commercial in nature and hence *carbon-neutral* due to offsetting properties. All the 'material transit' related fuel is considered beyond the scope of industry reporting, as it shall be considered elsewhere as per the IPCC guidelines.

Each fuel variant corresponds to a specific calorific value (energy content per unit mass) and emission value (tonnes of carbon dioxide equivalent per unit of energy content). Annexure 3 highlights all fuel variants alongside of corresponding calorific value and emission factors. These values may vary for domestic and imported source of origin as identified by India and suggested by IPCC guidelines. For instance, Table 3.4 C illustrates coal specific variations with calorific value and emission factor according to the choice of source and process within manufacturing sector.

Fuel Type	Calorific value (TJ/Gg)	Emission factor CO2 (T/TJ)	Source	Conversion factor source			
Coal	18.26	93.68	Domestic				
Coal (electricity)	17.09	96.76	Domestic	India's Second			
Coal (cement)	20.15	95.63	Domestic	Biennial Update Report (BUR) to			
Coal (fertilizer)	20.4	95.55	Domestic	United Nations			
Coal (non-ferrous metals)	18.17	96.36	Domestic	Framework Convention on Climate			
Coal (pulp, paper and print)	18.35	96.29	Domestic	Change (UNFCCC)			
Lignite	9.8	105.97	Domestic				
Coal	25.8	94.6	Imported	IDCC 2006 guidalines			
Lignite	9.69	106.51	Imported	IPCC 2006 guidelines			
Note: 1) CEEW compilation based on India's Second Biennial Update Report and IPCC 2006 default values for emission factors 2) Please refer to the chapter 2 (Stationary combustion) of IPCC 2006 guidelines for detailed information on the emissions factors. Source: (MoEFCC 2018), (IPCC 2007)							

It is important to understand the input use of a fuel for 'energy' and/or 'non-energy' purposes. This may vary across specific manufacturing segments for a same type of fuel. Essentially, only the energy use of an input fuel contributes to the direct GHG emissions. Any other non-energy use – be it feedstock, or interconversion of one form to other – does not contribute to the energy-use emissions.

The current form of manufacturing sector reporting in India, across various information channels (including ASI), does not elucidate the end use of input fuels within the factory premise. This is indeed challenging as well for all point sources to keep a record in a disaggregated manner. Hence, a user can not differentiate a specified quantity of fuel-use for heating purpose, captive power generation, and/or as a feedstock for non-energy uses. To overcome this challenge to a certain degree, palpable assumptions have been made on the basis of desktop research and expert consultations. These are similar to what has been assumed in the previous series (2005-2013) of GHG estimates reporting available at the GHG Platform India. Annexure 4 provides all

such assumptions on non-energy use of input fuels adopted for certain manufacturing activities. For example:

- a) Coal transformation into coking coal, especially within coke manufacturing units of integrated steel plants, is considered as a non-energy practice to avoid under-estimation or overestimation of emissions within the manufacturing operation. In such event, emissions are directly attributed to use of secondary forms (coke) by manufacturing units, and any sale of coke outside the premises has been deducted from the emissions accounting.
- b) Similarly, transformation of crude oil into refined petroleum products has not been considered for emissions, except for 'energy used' to carry out such activity. This is to avoid doubleaccounting of liquid fuel emissions from refined products and to ensure appropriate distribution of emissions into diverse manufacturing sub-sectors.
- c) Natural gas and/or naphtha is notably known for its non-energy use in fertilizer manufacturing (for urea manufacturing). Hence no emissions considered from such use.
- d) Certain manufacturing products use forms of fuel as an ingredient for its physical and chemical properties, hence does not necessarily results in emissions due to combustion. For instance, kerosene is used as solvent by paints, dying and varnishing industries. Any such kind of fuel consumption is treated as a feedstock and hence dropped from energy-use and emission accounting.

Methodology

The characteristic quality of input hydrocarbon fuels, and associated consumption determines the energy use emissions for manufacturing sector. The basic equation adopted to determine manufacturing energy-use emissions is mentioned below:

Egas = Afuel * C.Vunit * C.Vfuel * E.Fgas * GWPgas
Where:
<i>Egas</i> : Emission of greenhouse gas(es) in tonne
Afuel : Activity data of fuel (in litres/kg/tonne etc.)
<i>C.Vunit</i> : Conversion factor(s) to convert other reported units of fuel to a set of standard units chosen in the exercise (please refer to Annexure 5.)
C.Vfuel : Calorific value of fuel (tonne of energy in Tera Joule per tonne of fuel)
<i>E</i> . <i>Fgas</i> : Emission factor of GHG gas due to combustion of the fuel (tonne of gas /TJ of energy input)
<i>GWP gas</i> : Global warming potential of gas

The scope of energy use emission accounting is limited to 'manufacturing industries and construction (1A2) in addition to coverage of petroleum refining (1A1b), manufacturing of solid fuels (1A1ci), and other energy industries (1A1cii). Any emissions that arises due to purchase of electricity from the grid is attributed to electricity generation (1A1ai), which is beyond the scope of reporting. However, generation of captive power by the manufacturing units and the associated emissions are attributed to their respective sub-sectors (discussed above) falls under the scope of this accounting exercise. This section details out choice of methodology (tiers and approach), activity data, and emission factor variants used for major IPCC categories within the purview of manufacturing reporting.

Manufacturing industries and construction (IPCC 1A2)

This category further includes almost the entire range of manufacturing activities, as highlighted in **Error! Reference source not found.** (from 1A2a to 1A2m). ASI is the prime source of activity data for each of the sub-category where the fuel-use information is available at the unit level (Tier-3). However, emission factors for the input fuels represents national average for the major fuel, measured and updated by India for domestic sources. All the imported fuel types reflect IPCC default emission factor values. Hence, the study reports emissions at Tier 2 level for this category.

Petroleum refining (IPCC 1A1b)

The choice of methodology for this sector is Tier-2 using both country specific and default calorific values and emission factors of fuels consumed. There is a paucity of quality information on activity data from petroleum refineries. The Ministry of Petroleum and Natural Gas (MoPNG) provides total energy consumption by the refinery enterprises (at sub-national level), without any clarity on various fuel types associated as energy inputs. Assuming that most refineries operate with similar basket of fuels for crude transformation, fuel-wise activity data from Indian Oil Corporation Limited (IOCL) is extrapolated for the entire sector, which has remained constant over time. Country specific emission factors were used for specific fuel-types (wherever available), while default values were used for the others.

Manufacturing of solid fuels (IPCC 1A1ci)

This category involves reporting of emissions that arises from conversion of coal into coke, barring non-energy use of coal for this transformation process. Steel sector is the biggest consumer of coke as a reducing agent as well as source of energy in its blast furnaces. Hence, majority of coke production is integrated within steel units, which is difficult to separate out for reporting purpose. Thus, a major share of emissions from this category is included within manufacturing of steel (IPCC 1A2a), while the standalone coke manufacturing plants have been reported for their limited share in total emissions. It follows Tier 2 level of reporting.

Other energy industries (1A1cii)

This category involves a wide range of activities. In this methodology note, scope is limited to upstream oil and gas extraction activities alongside of emissions from coal mining activities. Consumption of diesel constitute activity data for coal mining activities, which is derived on the basis of 'specific consumption statistics (diesel per unit of coal produced) made available by Central Coalfields Limited (CCL) for its operations. Total emissions in terms of CO_2 equivalent (CO_2e) are reported at Tier 2 level with country specific emission factors (wherever reported) available from public sources).

Proxies, assumptions and correction measures

1. Unspecified fuel reporting in ASI

Several manufacturing units report a sizable amount of fuel-use only in terms of expenditure, not as quantity. In certain cases, manufacturing units provide only a generic description of fuel (as solid, liquid, gaseous) instead of specific form or distillate. This poses considerable challenges in arriving representative calorific value and emission factors for such reporting, especially with liquid fuels where the emission factor ranges between 63.1 Tonnes CO_2/TJ to as high as 107 Tonnes CO_2/TJ .

Measures adopted

To arrive at a proximate value of emissions from unspecified fuels, the actual fuel use pattern over a period of time was captured from units who reports energy inputs in a very specific manner. This may vary with geographical location of the unit and with each type of manufacturing sub-sector. The former is a factor of 'resource proximity and transport infrastructure' while the latter is largely determined on the basis of technology adopted. Hence, varying fuel use patterns were considered at state level and with each sub-sector type. This adjustment also helps in translation of reported fuel expenses into a determined fuel quantity for emission accounting. Table 3.4 D provides a 2015-16 snapshot of sector wise (at two-digit NIC level, see column) distribution of liquid fuel consumption (expressed as a share of quantity) adopted by Manufacturing units. This has largely stayed constant over the assessment period at each fuel category level. A detailed illustration is provided through Annexure 6.

Table 3.4 D: Manufacturing sub-sector wise	10			15	17			20
			-	-		18		
Diesel	0.00%	0.47%	0.03%	13.19%	0.00%	0.00%	0.00%	0.04%
Fuel oils n.e.c	0.00%	0.00%	0.31%	0.00%	0.00%	0.00%	0.09%	0.06%
Fuel, aviation turbine	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Furnace oil	93.89%	99.53%	99.34%	0.00%	0.00%	0.00%	0.01%	79.15%
Gas oils	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%
High speed diesel	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%
Kerosene	0.00%	0.00%	0.00%	0.00%	0.00%	1.03%	0.00%	0.22%
Kerosene n.e.c	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.03%
Light petroleum oil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Liquidified petroleum gas (LPG)	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	99.87%	19.80%
Medium petroleum oil, n.e.c.	0.00%	0.00%	0.00%	0.00%	0.00%	98.97%	0.00%	0.00%
Other light petroleum oils and light oils obtained from bituminous minerals n.e.c	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Petroleum coke	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.07%
Petroleum coke calcined	0.00%	0.00%	0.32%	0.00%	0.00%	0.00%	0.00%	0.00%
Petroleum products obtained from bitumen n.e.c.	6.11%	0.00%	0.00%	86.81%	0.00%	0.00%	0.00%	0.01%
Shale Oil	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.61%
Superior kerosene	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Grand Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Note: Percentages indicate the share of quantities of liquid fuels by type within each industrial								
sector.								
Source: Authors' analysis								

2. Erroneous reporting by manufacturing units

The information collection template under ASI is smartly designed to collect a wide range of information around material and energy consumption; form and quantum of output products; expenditure on various activities; manpower involved, etc. Since, energy/emission estimation is not a defined mandate for the exercise, it incorporates a very broad level of scrutiny and quality checks, largely limited to expenditure records. It was observed that in few cases, factories end us feeling perplexed with the extent of reporting, resulting in apparent mix-up between 'unit of measurement' and 'reported rates' of energy inputs. For instance: coal inputs see a wide (possibly erroneous) range of rates, starting from INR 196/tonne to as high as INR 49,508/tonne. This makes a substantial difference in the input fuel quantity for such industries, and can be largely explained as a mix-up between 'per tonne' and 'per kg' of reported unit. Rates may vary within a certain range considering the cost of transportation and differing tax structure.

Measures adopted

- As a primary step, different units of measurement (UoM) adopted by certain factories has been standardized to a common UoM for each fuel type across industries over the assessment period.
- Factories which are common over a period of time, mostly the bigger operations, and are consistent with reported rates and UoMs have been considered to arrive at a median rate for each fuel type. These median rates are further used to define permissible bounds for the outlier values when the entire dataset is analysed. Common factories within two different time frames (2004-05 to 2009-10, and, 2010-11 to 2015-16) were considered for defining median rates to ensure any new additions, closure or expansion of manufacturing activities.
- To mimic the heterogeneity with manufacturing process across the country, median rates were defined considering three distinct layers: (a) median rates at a sector level; (b) median rates at state level; and, (c) median rates at the national level. The choice of defining bounds is suitably made after considering adequate number of representative industries within each state.
- A generous variation of 50% (in either side) is allowed between the reported rate and the representative median value for each fuel type as a scrutiny measure. This is to accommodate higher costs incurred on transporting fuels for certain geographic locations.

3.4.3 Recalculation

GHG Platform India adopts a process of publishing independent and most recent inventory estimates for each economic sector on a periodic basis. It is natural that any such effort undergoes systemic changes over time due to improvements in capacity of information providers and assessors; data quality and availability; methodological change; refinement in assumptions, etc. All such changes are important and brings accuracy with the estimates. In order to draw trends for measuring improvements over time, it is necessary that user follows similar (preferably most recent) approach for the entire time-series to ensure comparability and completeness. IPCC recommends 'Recalculation' of emission estimates through its good practice guidelines for such purpose.

In case of energy use emissions, this version follows a few advancements with methodology and assumptions, as described below:

Revision of calorific values and emissions factors

In December 2018, MoEFCC issued an update on country specific emission factor for selected fuels and key processes through its second BUR (please refer to Table 3.4 C). Hence, the present analysis (2005 – 2015 series) is based on updated emission factors including recalculation for previous years.

Inclusion of emissions from captive power generation

In this series, emissions attributed to captive power generation (within manufacturing sector) are being reported alongside manufacturing emissions. This is a significant improvement in the methodology as it follows IPCC guidelines for auto-producers. In the previous series, captive emissions were part of 'electricity sector emissions,' which is now being shifted rightfully to manufacturing sector reporting. Hence, appropriate recalculation has been performed for the previous estimates as well.

Control measure on incremental fuel rates reported by factories

This note adopts modest assumptions on 'fuel rates' adjustments for certain factories wherever there is lack of clarity. Such adjustments follow median rates of fuel reported by similar operations at sector and state level. However, a certain degree of deviation is still observed as sudden rise/fall in evaluated fuel rates, especially where assessment points are limited to a few factories for median calculations. In order to prevent abrupt changes, 20% limit has been imposed to make room for annual increment in adjusted rates, unless all the major factories for a specific fuel reports higher degree of change. This additional check measure further helps in bringing down uncertainties with incomplete data points.

Table 3.4 E presents the overall impact of methodological differences on previous year estimates through recalculations. It varies between 3% to 24% mostly with an upside trend. Major deviation is observed for the base year and following year, which may certainly impact the discussion around intensity improvement targets of India over a period of time. One must take note of expanded scope of manufacturing estimate reporting via inclusion of captive emissions in the presented note, which was included elsewhere in the 2005 – 2013 series of reporting.

Year	2005	2006	2007	2008	2009	2010	2011	2012	2013
GHG emission estimates (2005 – 2013 series)	205	219	283	298	352	381	402	447	481
GHG emission estimates (2005 – 2015 series)	239	271	314	340	383	404	417	463	469
% difference between estimates	16%	24%	11%	14%	9%	6%	4%	4%	-3%

3.5 Key source category [2A, 2B, 2C, 2D: Industrial Process and Product Use emissions]

3.5.1 Category description

Table 3.5 A features key source categories for the activity data used in IPPU emission estimations. It further highlights the indicative quality of the data sources referred for each category. Refer Annexure 2 for detailed information of data sources used across the manufacturing sources.

Data quality has been marked high/medium/low depending upon consistency, accuracy, and completeness of the information. Wherever, the data is consistent and complete throughout the

reported period (2005 – 2015), it has been assigned 'high' quality. If the data is found inconsistent over the analyzed timeframe, or is modelled using suitable assumptions, it is considered to be of 'medium' quality. Wherever, average representative factors were used to derive activity data, quality is considered to be 'low'. It reflects scope of improvement (please refer to Annexure 7 for a detailed list of emission factors).

For IPPU emissions, since the activity data is directly sourced from public agencies without making any significant extrapolation or assumptions to capture the reported timeframe, most of the categories have 'high' quality of information. Hence, less than 2% of the IPPU emissions are derived from 'low' to 'medium' quality sources.

Table 3.	able 3.5 A: Category wise sources and quality of activity data for the IPPU emissions					
IPCC ID	GHG source & sink categories	Туре	Quality	Source		
2	Industrial processes and product use					
2A	Mineral industry					
2A1	Cement production	Secondary	High	СМА, ІВМ		
2A2	Lime production	Secondary	High	ASI		
2A3	Glass production	Secondary	High	ASI		
2A4a	Ceramics		High			
2A4b	Other uses of soda ash	Secondary	High	ASI		
2A4c	Non-metallurgical magnesia production	Secondary	High	ASI		
2A4d	Other uses of carbonates	Secondary	High	ASI		
2B	Chemical industry					
2B1	Ammonia production	Secondary	High	Annual Report, Ministry of Chemicals and Fertilizers, Exports-Imports database		

2B2	Nitric acid production	Secondary	High	ASI
2B3	Adipic acid production^			
2B4	Caprolactam, glyoxal and glyoxylic acid production	Secondary	High	
2B5	Carbide production	Secondary	High	
2B6	Titanium-dioxide production	Secondary	High	
2B7	Soda ash production	Secondary	High]
2B8a	Methanol production	Secondary	High	Annual Report, Ministry of Chemicals and Fertilizers,
2B8b	Ethylene production	Secondary	High	Market research
2B8c	Ethylene dichloride and vinyl chloride monomer production	Secondary	High	
2B8d	Ethylene oxide production	Secondary	High	
2B8e	Acrylonitrile production	Secondary	High	
2B8f	Carbon black production	Secondary	High	
2C	Metal industry			
2C1	Iron and steel production	Secondary	High	ASI
2C2	Ferroalloys production*			
2C3	Aluminium production	Secondary	High	MCX, IBM Mineral Yearbook, USGS
2C4	Magnesium production*			
2C5	Lead production	Secondary	High	IBM market survey report &
2C6	Zinc production	Secondary	High	Mineral Yearbook

20	Other- emissions from carbonates usage in copper production	Secondary	High	ASI
20	Non-energy products from fuels and solvent use			
20	01 Lubricant use	Secondary	Medium	ASI
20	2 Paraffin wax use	Secondary	Medium	ASI
20	Other – lubricant use in coal mining activities	Secondary	Low	SCCL Annual Reports
*: N	official data indicates absence of ot estimated due to unavailabi urce: Authors' compilation		oduction data	· · · · · · · · · · · · · · · · · · ·

3.5.2 Methodology

Simple manner of calculating the emissions is multiplying activity data with the associated emission factor. The emission factors are driven by attributes such as calorific value, carbon content associated with fuels, extent of combustion, etc. Whereas, activity data is a function of energy used for combustion process, and/or the amount of carbonaceous material entering a system. These could be directly specified or computed based on overall production or input materials consumed.

IPPU estimates find a mixed approach, using both top-down (supply side) as well as bottom-up (consumption based) activity data sourced from diverse publications. In IPPC terminology, activity data sourced from ASI shall be designated as Tier-3 level of information, which is the most accurate understanding of any manufacturing operation. IPCC lists out three level of tiers for the activity data, and emission estimation methodology. Each tier differs from the other based on the origin and quality of underlying information. Tier-1 methodology employs the default emission factors and other parameters as provided by IPCC, whereas Tier-2 represents an average country specific representation of the various fuel characteristics and prevalent technologies. Tier-3 represents greater level of details with more complex and site-specific data. Emission factors could either be country specific, or as per the prescription of IPCC guidelines. Table 3.5 B indicates the choice of tiers made for arriving at the emission estimates. Segregated information on the use of imported vis-à-vis domestic fuel across a wide-range of fuel-types is an additional advantage bringing more accuracy with the choice of emission factors, and hence improved emission accounting. Unit-level information is used to generate aggregate emissions at the sectoral, state and the national level.

Table 3.5 B: Tier approach followed for the IPPU emission

IPCC	GHG source & sink	CO2		CH4		N2O		
ID	categories	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor	
2A	Mineral industry							
2A1	Cement production *	T1	CS, D	T1	CS, D	T1	CS, D	
2A2	Lime production	T2	CS	T1	CS	T1	CS	
2A3	Glass production	T1	D	T1	D	T1	D	
2A4a	Ceramics	T1	D	T1	D	T1	D	
2A4b	Other uses of soda ash	T1	D	T1	D	T1	D	
2A4c	Non-metallurgical magnesia production	T1	D	T1	D	T1	D	
2A4d	Other	T1	D	T1	D	T1	D	
2B	Chemical industry							
2B1	Ammonia production	T1	D	T1	D	T1	D	
2B2	Nitric acid production	T1	D	T1	D	T1	D	
2B3	Adipic acid production	T1	D	T1	D	T1	D	
2B4	Caprolactam, glyoxal and glyoxylic acid production	T1	D	T1	D	T1	D	
2B5	Carbide production	T1	D	T1	D	T1	D	
2B6	Titanium-dioxide production	T1	D	T1	D	T1	D	
2B7	Soda ash production	T1	D	T1	D	T1	D	
2B8a	Methanol production	T1	D	T1	D	T1	D	
2B8b	Ethylene production	T1	D	T1	D	T1	D	
2B8c	Ethylene dichloride and vinyl chloride monomer production	T1	D	T1	D	T1	D	
2B8d	Ethylene oxide production	T1	D	T1	D	T1	D	
2B8e	Acrylonitrile production	T1	D	T1	D	T1	D	
2B8f	Carbon black production	T1	D	T1	D	T1	D	
2C	Metal industry		1					
2C1	Iron and steel production	T2	CS, D	T2	CS, D	T2	CS, D	
2C2	Ferroalloys production	T1	D	T1	D	T1	D	
2C3	Aluminium production	T1	D	T1	D	T1	D	
2C4	Magnesium production	T1	D	T1	D	T1	D	
2C5	Lead production	T1	D	T1	D	T1	D	

2C6	Zinc production	T1	D	T1	D	T1	D					
2C7	Other	T1	D	T1	D	T1	D					
2D	Non-energy products from fuels and solvent use											
2D1	Lubricant use	T1	D	T1	D	T1	D					
2D2	Paraffin wax use	T1	D	T1	D	T1	D					
2D4	Other	T2	CS, D	T2	CS, D	T2	CS, D					
Notation	Notations: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default											
Source:	Authors' analysis											

Activity data and emission factor(s)

IPPU emissions are largely associated with the manufacturing activities using non-fossil carbonaceous material (such as limestone, carbon electrodes, dolomite, etc.) as a process input, and/or from non-energy use of fossil fuels and their derivatives. In addition, GHG emissions arising from certain product categories such as leakages of refrigerant gases (having high global warming potential) from air-conditioning also attribute to IPPU emissions.

For IPPU emissions, activity data largely comprises of product output and/or consumption of carboniferous material which leads to emissions during the process. For instance – consumption of graphite electrodes leads to process emissions within the steel sector; similarly, burning of limestone (calcium carbonate) during cement production leads to IPPU emissions due to oxidation of carbonates into carbon dioxide.

IPPU related emission factors are based on either input carbonaceous material or represents emissions per unit of a product output. A detailed list of the emissions factors along with their source of information are presented in Annexure 7.

Unlike a comprehensive coverage of input energy fuels with each manufacturing unit, information on output from manufacturing units is poorly captured by the ASI. Alternative data sources were referred to such cases, especially for aluminium, zinc, lead and chemical manufacturing subsectors. Hence, all the information is secondary in nature obtained mainly from public sources. To maintain completeness of information, following assumptions have been maintained throughout the assessment period:

- a) Natural gas is conventionally used as a source of fuel as well as feedstock in the ammonia/urea manufacturing process, therefore separate accounting of the energy and IPPU based GHG emissions is not possible. Hence, overall emissions from fertiliser manufacturing (energy-use and IPPU) gets reported jointly under the IPPU head.
- b) Use of lubricants, solvents, and paraffin wax for machinery and other processes also contributes to IPPU emissions. Emissions from all such product use (including mining activities) are illustrated in supporting excel workbooks (Refer GHG Platform India website: <u>http://www.ghgplatform-india.org/methodology-industry-sector</u>). Activity data for mining sector is partially available through the ASI data sets.

Methodology

Accounting of IPPU emissions require a slightly different approach from the energy-use estimation process. The basic equation illustrated below captures the characteristic property of input

materials and/or output products as an activity data to bind with corresponding emission factors prescribed by IPCC 2006 guidelines.

Egas = Amat * C.Vmat * E.Fgas * GWPgas
Where:
Egas: Amount of greenhouse gas in tonne
Amat: Activity data of material (carbonaceous) input or product output (expressed in
tonne/kg/litre/unit etc.)
C.Vmat: Conversion factor to activity data units in tonne
E.Fgas: Emission factor of gas emitted in the process (tonne of gas per unit c
carbonaceous material input or product output)
GWPgas: Global warming potential of concerned gas

In this methodology note, assessment of IPPU emissions is limited to major IPCC categories, namely – mineral industry (2A); chemical industry (2B); metal industry (2C); and, non-energy products from fuels and solvents used (2D). Due to constraints with other categories, IPPU emissions has not been calculated for electronics industry (2E) and product uses as substitute for Ozone Depleting Substances (ODS). A brief description of adopted approach with reported categories is as follows:

Mineral industry (IPCC: 2A)

This category includes cement, lime and glass production as major activities alongside of other process use of carbonates such as – ceramics, use of soda ash, and non-metallurgical magnesia production.

- Cement production (2A1)
 - The data for cement production (2A1) has been obtained from Cement Manufacturers' Association (CMA) from 2004 to 2009 (CMA) and from Indian Bureau of Mines' annual publication (IBM Yearbook) for 2010 onwards.
 - Country-specific clinker factors have been used to compute the emissions (Table 3.5 C).
 - The latest state-wise share of cement manufacturing is available for 2010-11 (source: Lok Sabha), which further remained invariant for the latest years. Annexure 8 features the state-wise share of cement production.
 - CMA is the prime source of information on various types of cement production within the country. However, the data is available till 2007-08. For the remaining years, constant share of cement types has been maintained for the overall production data obtained from IBM.

Table 3.5 C: Clinker factors for types of cement												
Clinker Stock O.P.C. P.P.C. P.B.F.S. S.R.C. IRST 40 Others Total Cement												
1	0.95	0.68	0.6	0.95	0.95	0.95	0.77					
O.P.C = Ordinary Portland Cement, P.P.C. = Portland Pozzolana Cement, P.B.F.S. = Portland Blast Furnace Slag Cement, S.R.C. = Sulphate Resistant Cement, IRST 40 = Indian Railway Specification No. T-40												
Source: Authors' a	analysis											

- Lime production (2A2), glass production (2A3) and other process use of carbonates (2A4)
 - ASI is the prime source of information on all these activities

 The A_{mat} for this category is the total production number, the C.V_{mat} is the conversion factor based on the unit of reporting of the mineral and E.F_{gas} is the emission factor for the mineral.

Example: In the year 2015-16, certain factories in Andhra Pradesh reported lime production of 29385 tonnes. The conversion factor is 1 and the emission factor is 0.75 tCO2/tonne of product. Hence the emissions CO_2 will be multiplication of emission factor with quantity which gives us 22,039 tonnes of CO_2 and CO_2 e (since GWP of CO_2 is 1 as per SAR).

- Country-specific emission factor of CO₂ is used in case of lime production. The emission factor has been estimated based on stoichiometric equation using the grade as reported by Indian Bureau of Mines (IBM 2016).
- For all the other categories under the sector, default IPCC conversion factors are used for calculation of emissions. A detailed list of emission factors can be found in the Annexure 7.

Chemical industry (2B)

This category covers manufacturing of a wide range of chemical products, namely – ammonia, nitric acid, adipic acid, caprolactam, glyoxal, glyoxylic acid, carbide, titanium dioxide, soda ash, petrochemicals, carbon black, etc.

- IPCC default emission factors have been used for all the sub-categories under this category (refer Annexure 7)
- 'Chemical and Petrochemical statistics at a Glance' released by the Ministry of Chemicals and Fertilizers (Department of Chemicals and Petrochemicals 2019) is the prime source of activity data.
- Export-import database (EXIM database 2019) is used for information on net ammonia imports, whereas domestic information is derived from urea production statistics obtained from the Ministry of Chemicals and Fertilizers.
- The state-wise production of various chemicals has been estimated by using secondary literature, plant level capacity installation data and official reports. A detailed list of all chemicals under this manufacturing category, with their state shares can be found in Annexure 9.
- Information on activity data associated with fluorochemical production is barely available and hence has been kept out of coverage from this report.

Metal industry (2C)

This category is mainly represented through the production of iron and steel; ferroalloys; aluminium; magnesium; lead; zinc; etc.

- Tier 2 methodology is adopted for iron and steel due to advantage with country specific emission factors. Rest of the sub-categories follows Tier 1 method by using IPCC default emission factors.
- ASI is the prime source of information on input carbonaceous material within iron and steel and other metal production.
- The data for aluminium (2C3), zinc (2C5) and lead (2C6) production has been taken from IBM data. (IBM 2017)
- The data for aluminium production for the initial years was collected from United States Geological Survey (USGS 2019) and Aluminium MCX India (Aluminium MCX India 2019)
- The state-wise share of production for aluminium, zinc and lead have been taken from the Indian Bureau of Mines' Minerals Yearbook, as represented in Annexures 10, 11 and 12.

Non-energy products from fuels and solvent use (2D)

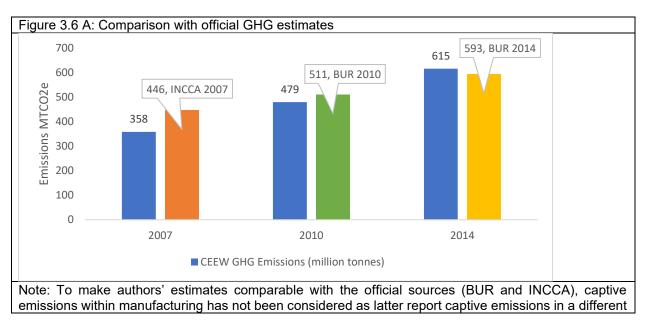
This category predominantly includes product-use emissions arising from lubricants, paraffin wax and solvents.

- Tier 1 methodology is followed for estimating emissions from lubricants (2D1) and paraffin wax (2D2) consumption with default IPCC conversion factors. Whereas, emissions from lubricant use in coal mining activity reported under 'others (2D4)' follows Tier 2 methodology due to country-specific factors. The value of specific fuel consumption 2D4, is derived using specific fuel consumption per tonne of coal produced (taken from Central Coalfields Limited) and the total coal and lignite production (taken from the coal directory).
- Data for 2D1 and 2D2 is sourced from ASI.
- Annexure 13 highlights the state-wise production quantities of coal and lignite in India, which is used to determine coal mining-related emissions under 2D4.

3.5.3 Re-calculation

Re-calculation of IPPU emissions from the chemical industry has been carried out. The state-wise production information of various chemicals has been sourced from secondary literature sources instead of ASI database. This is because a majority of these chemicals are used as intermediates, and ASI does not provide complete information on their production/consumption. Please refer to section 3.6.2 for detailed information on the methodology. Table 3.5 D highlights the difference in emission estimates from the chemicals sector when compared to the earlier phase 2 estimates for the top 5 states in terms of emissions from the chemical sector. A detailed table of emissions can be found in the workbook associated with IPPU emissions.

Table 3.5 D: Coi	Table 3.5 D: Comparison of IPPU emissions from the chemicals sector (Phase 2 and Phase 3)												
State	Phase	2005	2006	2007	2008	2009	2010	2011	2012	2013			
Cuieret	II	19	15	13	14	19	22	12	15	9			
Gujarat	III	13	13	14	14	15	16	17	17	18			
Uttar	II	1	1	1	0	1	1	15	7	2			
Pradesh	III	6	6	6	6	6	6	6	6	7			
.	П	0	0	0	0	0	0	1	0	0			
Rajasthan	III	3	4	3	3	4	4	4	4	4			
Maharashtra	II	4	11	13	14	13	13	12	12	22			
Manarashira	III	3	3	3	3	4	4	5	4	4			
West Bangal	II	1	1	1	0	0	0	0	0	0			
West Bengal	III	3	3	3	3	3	3	4	4	4			
Source: Authors	'analysis												


Source: Authors' analysis

3.6 Uncertainty

In this study, uncertainty with estimated emissions may arise due to variation in activity data and associated emission factors. Such variation occurs during direct measurement or as a result of assumptions-based accounting. Since, this study is largely based on secondary data obtained from public sources, uncertainties could emerge out of three major reasons:

- **Coverage:** The activity data (obtained from ASI) does not cover unregistered/informal sector activities, and represent only the formally registered firms under the section 2(m)(i) and 2(m)(ii) of the Factories Act. Within the formal sector reporting, it seemingly covers all the sectors well, except mining and construction activities, where data is highly sparse.
- **Sampling:** The activity data does not cover each firm individually for specific reporting. It covers only the bigger firms, and follows a sampling design for the rest of the firms assigning a representative multiplier to each reporting firm. The Ministry estimates errors and variance related to the sample design, and approves only the acceptable limits, however probability of uncertainty cannot be ignored. Multipliers may not be the best representation for the employment, productivity, and energy/resource use altogether for the sample survey firms. Nevertheless, the overall energy use represented by census units (larger firms) is almost 90% of the total activity data, which is consistent over the years.
- **Measurement:** The activity data (for energy use) provides an exhaustive reporting on fuel use by each firm covering more than 80 fuel types. However, lack of mandate on energy reporting allow users to dilute this information and club energy-use reporting under unspecified categories in expenditure terms. A few firms reflect mismatch between reported rates (of fuel) and its unit of measurement. Overall, such firms represent approx. 13% of the total emission estimates. A scientific approach is adopted to identify and correct 'units/rates' of erroneous entries, whereas expenditure-based reporting is approximated by mimicking trends from past reporting of the same or similar firms in each sector.

IPCC good practice guidelines (2006) suggests three approaches to estimate uncertainties: (a) comparison of results with independent data, (b) comparison from alternative models, and (c) expert judgement related to magnitude of uncertainties. In this case, quantification of the magnitude of uncertainties is difficult to achieve as: (a) no alternate source of information provides the desired level of granularity, and (b) ASI is lesser known for its utility to derive GHG estimates, hence lack of expert judgement at this point. A very high-level comparison with the official GHG estimates is possible for 2007 (INCCA),2010 (BUR) and 2014 (BUR-2), as can be noticed from **Error! Reference source not found.**. It suggests marginal deviations, which are unverified and unquantifiable due to insufficient clarity.

category. For 2014 comparison, CEEW estimates includes captive emissions for the Iron and Steel sector only, so as to match the scope and coverage of BUR-2 estimates. *Source:* Authors' analysis

Figure 3.6 A shows that except the comparison between INCCA (2007) and CEEW estimates, where INCCA is not an official submission by the Government of India; overall deviation between CEEW estimates and the official numbers from BURs is under 5%. This confirms a low uncertainty in the presented estimates. Further to this, few representations of 'low' and 'medium' activity data quality in 'key category analysis' (in the following section) also supports this conclusion.

3.7 Recommended improvements

This exercise has resulted from continual improvements through expert consultations, enhanced capacity and improved data quality for the recent years. This section recommends further improvements, and identifies how the published information could be used by a wide range of stakeholders including policy planners from state and central government(s); industry and their associations; research community; academicians, etc.

Proposed improvements

- **Frequency** of energy data published by the government agencies needs to be improved over time. Currently there is a lag of at least three to four years between the published date and reported year for energy statistics.
- Lack of quality of information is another barrier for improved understanding on GHG emissions. Most agencies do not collect (or publish) energy consumption records from industry units due to administrative challenges. This dilutes our understanding of the supply side perspective.
- In most cases, activity data information is made available by central agencies at an aggregated level. It is recommended that states plan for their own statistics to understand and address local level policy issues in a more scientific manner.
- Coverage of reported information is also a prominent area of improvement. For instance, ASI covers only the registered/formally operating units within the country. By excluding the informal/unregistered sector, often leaves an open space for interpretation and assumptions on the left out unregistered economy of the country. General perceptions suggest that the unregistered sector is highly energy inefficient due to lack of scale and sophisticated equipment. Thus far, not focusing on this sector is certainly a missed opportunity for India's policy planners to roll out measures towards decarbonisation.

Recently, NITI Aayog has constituted a working group on 'Energy Data Management' in India to address such challenges along with other prominent issues.

Recommended use of these estimates

- This effort is already assisting the MoEFCC, Government of India in reconciling their official estimates and seeking consultations with the authors and other experts as a quality control process. Continuation of such arrangement would be a strong indicator of success for this reporting under the collaborative effort of GHG Platform India.
- In India, each state government and Union territory has received a mandate to come up with their own State Action Plans on Climate Change (SAPCC). Thus far, 34 SAPCCs have been

received by the MoEFCC and further revision is in process to establish this as a periodic exercise. Since this reporting is a first-of-its-kind of independent effort attempted by civil society organizations to arrive at a sub-national understanding of emissions, it opens doors for extensive deliberations with state policy planning units to strengthen their climate planning and monitor the impact of such measures. At present, GHG Platform India is collectively assisting the state of Madhya Pradesh with their SAPCC revision exercise.

- Industry and their associations must take note of granular information provided in this methodology note to understand the scope and opportunities of decarbonisation before making long-term capital investments into existing and inefficient processes of manufacturing.
- Academicians and the research community could take forward this exercise for further improvements. Disaggregated information on industry estimates should be a perfect nudge to the research community to come up with more process and state-focused research outcomes.

4. Comparison with national inventories

A comparison of our GHG emissions estimates have been done with the two reference points available from India's official reporting to UNFCCC. i.e., (a) first Biennial Update Report to UNFCCC (for 2010) (M0EFCC 2015), and (b) second Biennial Update Report to UNFCCC (for 2014) (M0EFCC 2019). Table 4 A shows the comparison across different estimates:

Table 4 A: Source category wise details of deviation in GHG estimates (MTCO₂e) between GHGPI and official inventories published by Government of India

СС	onsolidated omparison	INCAA 2007	CEEW 2007 *	% differe nce	BUR 2010	CEEW 2010 *	% differe nce	BUR 2014	CEEW 2014 *	% differe nce	
SI. N o.	Sector Descriptio ns	MTCO₂ eq	MTCO₂ eq		MTCO₂ eq	MTCO₂ eq		MTCO₂ eq	MTCO₂ eq		
1	Iron and steel	117	129	-10%	96	179	-86%	155	224	-44%	
2	Chemicals	33	44	-32%	36	51	-40%	30	77	-153%	
3	Ferro alloys	2	0	100%	4	0	100%	2	0	100%	
4	Non- ferrous metals	3	16	-445%	24	25	-1%	29	37	-31%	
5	Non- metallic minerals	131	116	11%	145	150	-3%	174	189	-8%	
6	Non- energy products from fuels	1	1	-52%	2	2	-19%	2	4	-71%	
7	Refining		28	4%	42	40	6%	50	43	15%	
8	Manufactu ring of solid fuels	34	1		18	1	95%	7	1	81%	
9	Other energy industry @		4		N.R	5		N.R	5		
10	Mining^, #	1	0	99%	4	0	#	3	0	#	
11	Textile and leather	2	6	- 219%	3	9	-253%	4	12	-246%	
12	Food and beverages	28	3	90%	N.R	5		N.R	6		
13	Pulp, paper and print	5	6	-16%	7	8	-18%	4	12	-204%	

14	Transport equipment	N.R	1		N.R	2		0.42	2	-259%
17	Machinery	N.R	4		N.R	2		0.42	3	
15	Wood and wood products	N.R	0		N.R	0		N.R	0	
16	Constructi on #	N.R	0	#	N.R	0	#	N.R	0	#
18	Manufactu ring n.e.c, \$	N.R	0		N.R	1		N.R	1	
19	Non specific industries	88	N/A		130	N/A		129	N/A	
20	Other (Pulp and paper)							3		
	Grand Total (energy- use and IPPU)	446	358	20%	511	478	6.4%	593	615	-3.6%
	Difference level		20%			6.41%			-3.65%	
Sour	ce: Authors' a	analysis								

At an aggregated level, the deviation between our estimates and national reporting is within 7% - our estimates are 6% lower in 2010, and 4% higher in 2014. However, when analyzed at the sectoral level, it can be seen that the official estimates at the sectoral level are significantly lower compared to the CEEW estimates. One plausible explanation to the under-reporting of sectoral emissions is because they are reported under the '*non specified industries*'. The share of emissions reported under this sector was 27% in 2010 and 21% in 2014.

References

- 2019. *World Steel.* https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf.
- 2019. Aluminium MCX India. Accessed 03 18, 2019.
 - https://www.mcxindia.com/products/metals/aluminium.
- Argelwar, Rahul P., and B. S. Dani. 2017. "Captive Power Generation System." *Journal of Network Communications and Emerging Technologies (JNCET)* 7 (1).
 - http://www.cercind.gov.in/oper2.htm.
- 2018. CCL. http://www.centralcoalfields.in/prfnc/anulrpt.php.
- Census of India. 2014. *Population Statistics*. 12 22. Accessed July 25, 2019.

http://planningcommission.nic.in/data/datatable/data_2312/DatabookDec2014%20307.pdf. Choudhury, A, J Roy, S Biswas, C C Chakraborty, and K Sen. 2004. "Determination of carbon dioxide

emission factors from coal combustion." In *In Climate Change and India: Uncertainty Reduction in Greenhouse Gas Inventory Estimates*, edited by A P Mitra. Hyderabad: Universities Press. . *CMA.* . http://cmaindia.org/annual-report.html.

- 2019. Department of Chemicals and Petrochemicals. Accessed 03 19, 2019. https://chemicals.nic.in/document-report/reports.
- 2019. EXIM database. Accessed 03 2019, 19. http://commerce-app.gov.in/eidb/.
- FAO. 2009. *Livestock's Long Shadow: Environmental Issues and Options.* Rome: United Nations. Accessed 10 14, 2016. ftp://ftp.fao.org/docrep/fao/010/a0701e/a0701e03.pdf.
- FAO. 2009. *Livestock's Long Shadow: Environmental Issues and Options*. Rome: United Nations. Accessed 10 14, 2016. http://www.fao.org/3/a0701e/a0701e04.pdf.
- 2017. IBEF. . https://www.ibef.org/industry/cement-presentation.
- IBEF. 2019. "Indian Cement Industry Analysis." *India Brand Equity Foundation.* February. https://www.ibef.org/industry/cement-presentation.
- IBM. 2015. "Indian Minerals Yearbook 2013." *Indian Bureau of Mines*. 3 1. Accessed 4 22, 2016. https://ibm.gov.in/writereaddata/files/08012016122133Limestone%20and%20Other%20Calcareo us%20Materials-2015-Final.pdf.
- IBM. 2017. "Mineral Yearbook." https://ibm.gov.in/index.php?c=pages&m=index&id=1007.
- IBM. 2016. *Minerals Yearbook Limestone and other calcareous materials.* Report, Nagpur: Indian Bureau of Mines.

https://ibm.gov.in/writereaddata/files/01082019100709Limestone%20_%20Other%20Calc%20Ma terials%202016.pdf.

- . IBM Yearbook. . https://ibm.gov.in/index.php?c=pages&m=index&id=1008.
- INCCA. 2010. India: Greenhouse Gas Emissions 2007. New Delhi: INCCA.
- IOCL. 2012-13. *Sustainability Report.* Corporate Sustainability Report, New Delhi: Indian Oil Corporation Limited. https://www.iocl.com/download/Sustainability_Report_2012-13.pdf.
- IPCC. 2007. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Kanagawa, Japan: Task Force on National Greenhouse Gas Inventories. https://www.ipcc
 - nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf.
- 2018. IPCC-AR5. https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf.
- 2018. IPCC-SAR. https://www.ipcc.ch/site/assets/uploads/2018/06/2nd-assessment-en.pdf.
- MoEFCC. 2018. India Second Biennial Update Report to the United Nations Framework Convention on Climate Change. New Delhi: Government of India.

https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf.

MOEFCC. 2015. India: First Biennial Update Report to the United Nations Framework Convention on Climate Change. New Delhi: Government of India.

MOEFCC. 2018. India: Second Biennial Update Report to the United Nations Framework Convention on Climate Change. New Delhi: MOEFCC, 20. Accessed April 07, 2019.

https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf. 2017. *MoPNG*. http://petroleum.nic.in/more/indian-png-statistics.

MOSPI. 2018. http://mospi.nic.in/sites/default/files/publication_reports/Energy_Statistics_2018.pdf.

MOSPI. 2015. *Energy Statistics 2015.* New Delhi: Central Statistics Office, Ministry of Statistics and Programme Implementation, Government of India.

-. 2018. MOSPI. Accessed July 2019. http://pibphoto.nic.in/documents/rlink/2018/nov/p2018112801.pdf.

MOSPI. 2018. National Account Statistics. Background note, New Delhi: Government of India.

http://pibphoto.nic.in/documents/rlink/2018/nov/p2018112801.pdf. —. 2016b. *National Industries Classification.* Accessed 2016.

http://mospi.nic.in/Mospi New/site/inner.aspx?status=2&menu id=129.

—. 2016c. National product classification. Accessed 2016.

http://mospi.nic.in/Mospi_New/site/inner.aspx?status=2&menu_id=158.

. MOSPI, 2018. http://mospi.nic.in/sites/default/files/publication_reports/Energy_Statistics_2018.pdf.

RBI. 2015. Handbook of Statistics on Indian Economy. 9. Accessed 4 12, 2016. https://www.rbi.org.in/Scripts/AnnualPublications.aspx?head=Handbook%20of%20Statistics%20o n%20Indian%20Economy.

2019. USGS. Accessed 03 18, 2019. https://www.usgs.gov/.

World Bank. 2017. World Bank Data Bank - India. April 19. http://data.worldbank.org/country/india.

. World Bank, 2014. https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=IN.

World Steel Association. 2018. World Steel in Figures. Brussels: World Steel Association.

https://www.worldsteel.org/en/dam/jcr:f9359dff-9546-4d6b-bed0-

996201185b12/World+Steel+in+Figures+2018.pdf.

List of Abbreviations

List of Tables

Table ES 1: Snapshot of total GHG emissions from gases and sector
Table 1.2 A: Global warming potential as per IPCC assessment reports
Table 1.10 A: Details of key source categories excluded from present GHG estimates14
Table 2.1 A: Total national GHG emission estimates by sector
Table 2.2 A: Distribution of emission contribution (2015)
Table 3.1 A: GHG estimates for base year and current year (MTCO ₂ e)18
Table 3.2 A: Sectoral breakdown of manufacturing emissions (2005 to 2015) in MTCO ₂ e using IPCC SAR
Table 3.4 A: Category wise source and quality of activity data for energy-use emissions24
Table 3.4 B: Tier approach followed for the manufacturing sector emission (energy-use and IPPU
category
Table 3.4 C: Distinct emission factors and calorific values adopted for coal as per the process and
source of origin
Table 3.4 D: Manufacturing wise preferences for liquid fuel distillate in 2015-16
Table 3.4 E: Comparison between energy-use emission estimates (Phase 2 and Phase 3) 32
Table 3.5 A: Category wise sources and quality of activity data for the IPPU emissions
Table 3.5 B: Tier approach followed for the IPPU emission
Table 3.5 C: Clinker factors for types of cement
Table 3.5 D: Comparison of IPPU emissions from the chemicals sector (Phase 2 and Phase 3
Table 4 A: Source category wise details of deviation in GHG estimates (MTCO ₂ e) between GHGP
and official inventories published by Government of India44

List of Figures

Figure ES 1: Overview of manufacturing (energy-use and IPPU) emissions betwee 2015.	een 2005 and
Figure ES 2: Manufacturing emissions (energy use and IPPU) growth trend during	
Figure ES 3: Top emitters among states in terms of manufacturing GHG emissions	for 2015 data
Figure 1.7 A: Institutional arrangement at GHG Platform India Error! Bookma	rk not defined.
Figure 2.1 A: Year-on-year growth of manufacturing emissions (2005 - 2015)	15
Figure 2.1 B: Share of sub-sectors in overall emissions (2015)	
Figure 3.2 A: Emissions intensity and per capita emissions (2005-2015)	
Figure 3.2 B: Trend of energy use emissions across end-use manufacturing sectors	
Figure 3.2 C: Emissions from combustion of industrial fuels (2005-2015)	
Figure 3.2 D: Trend of IPPU emissions across end-use manufacturing sectors (200	
Figure 3.6 A: Comparison with official GHG estimates	,

Annexures

Annexure 1 Manufa	cluring	Sector											CAGR	%
Description	2004- 05	2005- 06	2006- 07	2007- 08	ars (valu 2008- 09	2009- 10	2010- 11	2011- 12	2012- 13	2013- 14	2014- 15	2015 -16	(2005 to 2015)	Change (2005 to 2015)
Manufacturing Sector GVA	7933 08	8674 75	1021 780	1093 106	1144 085	1269 564	1367 258	1409 986	1486 873	1560 709	1683 938	1898 790		
Calendar Years (values in INR crores)														
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015			
Manufacturing Sector GVA (Values In INR Crores)	8489 33	9832 04	1075 275	1131 340	1238 194	1342 835	1399 304	1467 651	1542 250	1653 131	1845 077		8%	
Emissions (values in Million tonnes CO2eq AR2)	341	378	427	459	512	545	572	619	627	667	635		6%	
Emissions Intensity (values in Million tonnes CO2eq AR2/INR crores)	0.000	0.000	0.000 397	0.000	0.000	0.000 406	0.000	0.000	0.000	0.000	0.000 344		-2%	-14%

Annexu	Annexure 2 Data sources for the energy and IPPU activity Data												
Table 8: sources	e 8: Activity data 2004-05 2005-06 2006-07				2007-08	007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 2015							2015-16
IPCC codes	Sector/Subsector - as per IPCC, 2006 classification Data Sources Used for Emission Estimation												
1A1	Fuel Combustion Activities > Energy industries												
1A1a	Main Activity Electricity and Heat production	Beyond cu	rrent scope										

	(utility +	
	captive)	
1A1b	Petroleum refining	MoP&NG
1A1c	Manufacture of Solid Fuels and other Energy Industries	
1A1ci	Manufacture of Solid Fuel	ASI data
1A1cii	Other Energy Industry	Specific fuel consumption CIL annual reports, MoPNG
1A2		1A2: Manufacturing Industries and Construction ^{^^}
1A2a	Iron and Steel	
1A2b	Non-Ferrous Metals	
1A2c	Chemicals and Fertilisers	
1A2d	Pulp, Paper and Print	
1A2e	Food Processing, Beverages and Tobacco	
1A2f	Non-metallic Minerals	
1A2g	Transport Equipment	ASI Data
1A2h	Machinery	
1A2i	Mining (excluding fuels) and Quarrying	
1A2j	Wood and Wood Products	
1A2k	Construction	
1A2I	Textile and Leather	
1A2m	Non-specified Industry	
1A3	Transport	Beyond current scope
1A4	other sectors	

1A5	Non-specified									
2A	·		2A Mineral	Industry						
2A1	Cement Production	Cement Manufacturing Association	<u>IBM 2009-13</u>	<u>IBM</u> 2014	<u>IBM 2016</u>	<u>IBM 2017</u>				
2A2	Lime Production			1		•				
2A3	Glass Production									
2A4	Other Process Uses of Carbotes									
2A4a	Ceramics									
2A4b	Other Uses of Soda Ash	ASI Data								
2A4c	Non- Metallurgical Magnesia Production									
2A4d	Other									
2A5	Other									
2B			Chemical	ndustry						
2B1	Ammonia Production	ASI Data- Ministry of chem	icals and fertilizers							
2B2	Nitric Acid Production	ASI Data								
2B3	Adipic Acid Production									
2B4	Caprolactam, Glyoxal and Glyoxylic Acid Production									
2B5	Carbide Production									
2B6	Titanium Dioxide Production	Chemicals and Petrochemi	cals statistics 2014, 2015, 2016, 2017	Ministry o	of chemicals and fertilizers)					
2B7	Soda Ash Production									
2B8a	Methanol									
2B8b	Ethylene									

2B8c	Ethylene	
	Dichloride and	
	Vinyl Chloride	
	Monomer	
2B8d	Ethylene Oxide	
2B8e	Acrylonitrile	
2B8f	Carbon Black	
2C		Metal Industry
2C1	Iron and Steel	
	Production	ASI Data
2C2	Ferroalloys Production	
2C3	Aluminium	<u>IBM</u> <u>IBM</u> <u>IBM</u> <u>IBM</u> <u>IBM</u>
	Production	Aluminium MCX India IBM mineral yearbook 2012 mineral mineral mineral Mineral Mineral Mineral Mineral
		USGS MCX India MCX India IBM mineral yearbook 2012 yearbook 2013 yearbook 2014 Yearbook Yearbook 2015 2016 Yearbook 2017
2C4	Magnesium	
204	Production	
		NE
2C5	Lead Production	IBM Bate IBM IBM IBM IBM IBM IBM Mineral Veetback 2016 IBM Mineral
2C6	Zinc	IBM Data IBM Data mineral yearboo mineral yearbook mineral yearbook mineral yearbook IBM Mineral Yearbook 2016 Mineral Yearbook
200	Production	k 2013 2014 k 2015 2017
2C7	Other	ASI Data
2D		Non-Energy Products from Fuels and Solvent Use
2D1	Lubricant Use	
2D2	Paraffin Wax Use	ASI Data
2D3	Solvent Use	NE
2D4	Other	Lubricant use in Coal Mining
Source	Authors' compi	ilation

Annexure 3: Detailed topology of fuel wise (a) emission factors, (b) calorific value									
			En	nissions Fac	tor (T/TJ)				
Fuel CODE	Source	Calorific Value (TJ/Gg)	CO2	CH4	N2O	Source			
Anthracite (raw coal)	Domestic	19.63	95.81	0.001	0.0015	Determination of carbon dioxide emission factor from coal combustion - Ashim Choudhury			

						India's Second Biennial Update Report (BUR) to United
Coal	Domestic	18.26	93.6833	0.001	0.0015	Nations Framework Convention on Climate Change (UNFCCC)
						India's Second Biennial Update Report (BUR) to United
Coal (Electricity)	Domestic	17.09	96.76333	0.001	0.0015	Nations Framework Convention on Climate Change (UNFCCC)
						India's Second Biennial Update Report (BUR) to United
Coal (Cement)	Domestic	20.15	95.62667	0.001	0.0015	Nations Framework Convention on Climate Change (UNFCCC)
						India's Second Biennial Update Report (BUR) to United
Coal (Fertiliser)	Domestic	20.4	95.55333	0.001	0.0015	Nations Framework Convention on Climate Change (UNFCCC)
						India's Second Biennial Update Report (BUR) to United
Coal (Non-Ferrous Metals)	Domestic	18.17	96.36	0.001	0.0015	Nations Framework Convention on Climate Change (UNFCCC)
	Domestic	10.17	00.00	0.001	0.0010	India's Second Biennial Update Report (BUR) to United
						Nations Framework Convention on Climate Change
Coal (Pulp, Paper and Print)	Domestic	18.35	96.28667	0.001	0.0015	(UNFCCC)
	– "	10.00	07.04		0.00/5	Determination of carbon dioxide emission factor from coal
Coal (under sized)	Domestic	19.63	95.81	0.001	0.0015	combustion - Ashim Choudhury Determination of carbon dioxide emission factor from coal
Coal ash	Domestic	9.69	106.51	0.001	0.0015	combustion - Ashim Choudhury
Coal asi	Domestic	9.09	100.51	0.001	0.0015	Determination of carbon dioxide emission factor from coal
Coal compressed (middlings)	Domestic	19.63	95.81	0.001	0.0015	combustion - Ashim Choudhury
						India's Second Biennial Update Report (BUR) to United
						Nations Framework Convention on Climate Change
Coal for carbonisation	Domestic	23.66	96.36	0.001	0.0015	(UNFCCC)
Cashalash	Demestic	0.00	100 51	0.001	0.0045	Determination of carbon dioxide emission factor from coal
Coal slack	Domestic	9.69	106.51	0.001	0.0015	combustion - Ashim Choudhury Determination of carbon dioxide emission factor from coal
Coal, not agglomerated, n.e.c.	Domestic	19.63	95.81	0.001	0.0015	combustion - Ashim Choudhury
	Bolliootio	10.00	00.01	0.001	0.0010	Determination of carbon dioxide emission factor from coal
Briquettes, coal, coal dust	Domestic	9.69	106.51	0.001	0.0015	combustion - Ashim Choudhury
Briquettes and similar solid fuels manufactured from coal, n.e.c.	Domestic	19.63	95.81	0.001	0.0015	Determination of carbon dioxide emission factor from coal combustion - Ashim Choudhury
11.0.0.	Domestic	13.03	33.01	0.001	0.0013	Determination of carbon dioxide emission factor from coal
Peat, hard/medium	Domestic	9.76	106	0.001	0.0015	combustion - Ashim Choudhury
,						Determination of carbon dioxide emission factor from coal
Peat, other than hard/medium	Domestic	9.76	106	0.001	0.0015	combustion - Ashim Choudhury
					o oc :-	Determination of carbon dioxide emission factor from coal
Peat, n.e.c.	Domestic	9.76	106	0.001	0.0015	combustion - Ashim Choudhury
Lignite, not agglomerated	Domestic	9.8	105.9667	0.001	0.0015	India's Second Biennial Update Report (BUR) to United Nations Framework Convention on Climate Change (UNFCCC)
						India's Second Biennial Update Report (BUR) to United Nations Framework Convention on Climate Change
Lignite, agglomerated	Domestic	9.8	105.9667	0.001	0.0015	(UNFCCC)

Petroleum oils and oils obtained from bituminous minerals, crude	Domestic	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Fryon Gas	Domestic					IPCC 2006 Guidelines
Gas compressed natural	Domestic	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
liquified petroleum gas	Domestic	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
natural gas	Domestic	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Gas, n.e.c	Domestic	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Asphalt (Gilsonite)	Domestic					IPCC 2006 Guidelines
Glancepitch	Domestic	38.1	73.3	0.003	0.0006	IPCC 2006 Guidelines
Shale Oil	Domestic	38.1	73.3	0.003	0.0006	IPCC 2006 Guidelines
Bituminous or oil shale and tar sands n.e.c	Domestic	8.9	107	0.001	0.0015	IPCC 2006 Guidelines
Asphalt natural	Domestic					IPCC 2006 Guidelines
Asphalt Rock	Domestic					IPCC 2006 Guidelines
Bitumen	Domestic					IPCC 2006 Guidelines
Bitumen, blown	Domestic					IPCC 2006 Guidelines
Bitumen, h.g.	Domestic					IPCC 2006 Guidelines
Bitumen and asphalt, natural; asphaltites and asphaltic rock; n.e.c	Domestic					IPCC 2006 Guidelines
Crude mineral	Domestic	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Lignite briquettes	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Atomic energy	Domestic					IPCC 2006 Guidelines
Biogas energy	Domestic					IPCC 2006 Guidelines
Hydro-electricity	Domestic					IPCC 2006 Guidelines
Kinetic energy	Domestic					IPCC 2006 Guidelines
Other non conventional electricity	Domestic					IPCC 2006 Guidelines
solar energy	Domestic					IPCC 2006 Guidelines
steam energy	Domestic					IPCC 2006 Guidelines
Thermal electricity	Domestic					IPCC 2006 Guidelines
Wind energy	Domestic					IPCC 2006 Guidelines
Electrical energy, n.e.c	Domestic					IPCC 2006 Guidelines

Coal gas	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Mafron gas	Domestic					IPCC 2006 Guidelines
Other gaseous hydrocarbons	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Other than petroleum gas	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Water gas	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Coal gas, water gas, producer gas and similar gases, other than petroleum gases and other gaseous hydrocarbons;n.e.c	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Briquettes, coke	Domestic	28.2	107.06	0.001	0.0015	IPCC 2006 Guidelines
Coal rejects	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coal washed	Domestic	19.63	95.81	0.001	0.0015	IPCC 2006 Guidelines
Coke breeze	Domestic	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
Coke cp	Domestic	28.2	107.06	0.001	0.0015	IPCC 2006 Guidelines
Coke dust	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke hard	Domestic	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke mixed	Domestic	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke peat	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke seme	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke soft	Domestic	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Lignite briquettes	Domestic	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke and semi-coke of coal, of lignite or of peat; retort carbon n.e.c	Domestic	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Benzol	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar by-product	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar crude	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar Oil	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar peat	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar processed	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar product	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Tar from Coal or Lignite	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines

Fuel eviation turking	Demestie	44.2	co a	0.000	0.0000	
Fuel, aviation turbine	Domestic	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Petrol / motor spirit/ gasoline Motor spirit (gasolene),	Domestic	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
including aviation spirit n.e.c	Domestic	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Spirit type (gasolene type) jet fuel	Domestic	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Light petroleum oil	Domestic	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Other light petroleum oils and light oils obtained from						
bituminous minerals n.e.c	Domestic	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Kerosene	Domestic	43.8	71.9	0.003	0.0006	IPCC 2006 Guidelines
Superior kerosene	Domestic	44.1	71.6	0.003	0.0006	IPCC 2006 Guidelines
Kerosene n.e.c	Domestic	43.8	71.9	0.003	0.0006	IPCC 2006 Guidelines
Kerosene type jet fuel	Domestic	44.1	71.6	0.003	0.0006	IPCC 2006 Guidelines
Diesel	Domestic	43	74.1	0.003	0.0006	IPCC 2006 Guidelines
High speed diesel	Domestic	43	74.1	0.003	0.0006	IPCC 2006 Guidelines
Medium petroleum oil, n.e.c.	Domestic	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Gas oils	Domestic	43	74.1	0.003	0.0006	IPCC 2006 Guidelines
Fuel oils n.e.c	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Furnace oil	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Grease, petroleum etc.	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil lubricating used in spindle/ spinnings the like	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil used for tempering	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil used in leather	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil used in transformer	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, base	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, c.p.w	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, cuttings	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, middle	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, mineral white	Domestic	40.4	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil, solvent	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, used in hydrolic machine	Domestic	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines

Para cresol	Domestic	44.5	73.3	0.003	0.0006	IPCC 2006 Guidelines
Lubricating pet	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Compressed natural gas (CNG)	Domestic	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Gas natural	Domestic	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Liquid or liquid gas fuel for lighter	Domestic	40.4	73.3	0.003	0.0006	IPCC 2006 Guidelines
Liquidified petroleum gas (LPG)	Domestic	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
Propane and butanes, liquefied, n.e.c.	Domestic	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
Butadiene	Domestic					IPCC 2006 Guidelines
Butylene	Domestic					IPCC 2006 Guidelines
C-4 Raffinate	Domestic					IPCC 2006 Guidelines
Ethylene	Domestic					IPCC 2006 Guidelines
Isobutylene	Domestic					IPCC 2006 Guidelines
N-butene	Domestic					IPCC 2006 Guidelines
Polyisobutylene, PIB	Domestic					IPCC 2006 Guidelines
Propylene	Domestic					IPCC 2006 Guidelines
all gases, except natural gas n.e.c	Domestic					IPCC 2006 Guidelines
Bituminous oil	Domestic	8.9	107	0.001	0.0015	IPCC 2006 Guidelines
Paraffin incl wax	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Petroleum coke	Domestic	32.5	97.5	0.003	0.0006	IPCC 2006 Guidelines
Petroleum coke calcined	Domestic	32.5	97.5	0.003	0.0006	IPCC 2006 Guidelines
Petroleum jelly	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Tarfelt	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Wax chlorinated paraffin	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Wax polythene	Domestic	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Petroleum products obtained from bitumen n.e.c.	Domestic	8.9	107	0.003	0.0006	IPCC 2006 Guidelines
Ammonia gas	Domestic					IPCC 2006 Guidelines
Ammonia liquid	Domestic					IPCC 2006 Guidelines
Coal tar processed	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines

			I			
Coal tar, crude	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar, pitch	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Oil, coal tar	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Pitch other than hard/medium	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Pitch, hard/medium	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Other coal tar oil pitch products, n.e.c.	Domestic	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Urea	Domestic	20	00.7	0.001	0.0013	IPCC 2006 Guidelines
Urea, others	Domestic					
Ammonium sulphate	Domestic					
Ammonium nitrate Emulsifier / batching oil (excl.	Domestic					
wax emulsifier Emulsifier agents (non-photo	Domestic					
sensitive)	Domestic					
Paint	Domestic					
Painting oil	Domestic					
Paints (paste) other than alum paste	Domestic					
Paints epoxy, Epoxy powder						
and liquid	Domestic					
Paints, bituminious/ coal tar	Domestic					
Paints, enamels	Domestic					
Paints, plastic emulsion Liquefied petroleum gas (Domestic					
LIQUEIIED petroleum gas (LPG) cylinders of on and steel	Domestic					
						India's Second Biennial Update Report (BUR) to United Nations Framework Convention on Climate Change
Coal consumed	Domestic	18.26	93.6833	0.001	0.0015	(UNFCCC)
Coal consumed (Electricity)	Domestic	17.09	96.76333	0.001	0.0015	
Coal consumed (Cement)	Domestic	20.15	95.62667	0.001	0.0015	
Coal consumed (Fertiliser)	Domestic	20.4	95.55333	0.001	0.0015	
Coal consumed (Non-Ferrous Metals)	Domestic	18.17	96.36	0.001	0.0015	
Coal consumed (Pulp, Paper		-				
and Print) Petrol, diesel, oil, lubricants	Domestic	18.35	96.28667	0.001	0.0015	
consumed	Domestic			0.003	0.0006	IPCC 2006 Guidelines

Gas consumed	Domestic	0	0	0.001	0.0001	IPCC 2006 Guidelines
Other fuel consumed	Domestic	0	0	0	0	IPCC 2006 Guidelines
Anthracite (raw coal)	Import	26.7	98.3	0.001	0.0015	IPCC 2006 Guidelines
Coal	Import	25.8	94.6	0.001	0.0015	IPCC 2006 Guidelines
Coal (under sized)	Import	19.63	95.81	0.001	0.0015	IPCC 2006 Guidelines
Coal ash	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coal compressed (middlings)	Import	26.7	98.3	0.001	0.0015	IPCC 2006 Guidelines
Coal for carbonisation	Import	28.2	94.6	0.001	0.0015	IPCC 2006 Guidelines
Coal slack	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coal, not agglomerated, n.e.c.	Import	26.7	98.3	0.001	0.0015	IPCC 2006 Guidelines
Briquettes, coal, coal dust	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Briquettes and similar solid fuels manufactured from coal, n.e.c.	Import	26.7	98.3	0.001	0.0015	IPCC 2006 Guidelines
Peat, hard/medium	Import	9.76	106	0.001	0.0015	IPCC 2006 Guidelines
Peat, other than hard/medium	Import	9.76	106	0.001	0.0015	IPCC 2006 Guidelines
Peat, n.e.c.	Import	9.76	106	0.001	0.0015	IPCC 2006 Guidelines
Lignite, not agglomerated	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Lignite, agglomerated	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Petroleum oils and oils obtained from bituminous minerals, crude	Import	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Fryon Gas	Import					
Gas compressed natural	Import	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
liquified petroleum gas	Import	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
natural gas	Import	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Gas, n.e.c	Import	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Asphalt (Gilsonite)	Import					
Glancepitch	Import	38.1	73.3	0.003	0.0006	IPCC 2006 Guidelines
Shale Oil	Import	38.1	73.3	0.003	0.0006	IPCC 2006 Guidelines
Bituminous or oil shale and tar sands n.e.c	Import	8.9	107	0.001	0.0015	IPCC 2006 Guidelines
Asphalt natural	Import					

Asphalt Rock	Import					
Bitumen	Import					
Bitumen, blown	Import					
Bitumen, h.g.	Import					
Bitumen and asphalt, natural; asphaltites and asphaltic rock;						
n.e.c	Import					
Crude mineral	Import			0.003	0.0006	IPCC 2006 Guidelines
Lignite briquettes	Import			0.001	0.0015	IPCC 2006 Guidelines
Atomic energy	Import					
Biogas energy	Import					
Hydro-electricity	Import					
Kinetic energy	Import					
Other non conventional electricity	Import					
-						
solar energy	Import					
steam energy	Import					
Thermal electricity	Import					
Wind energy	Import					
Electrical energy, n.e.c	Import					
Coal gas	Import			0.001	0.0001	IPCC 2006 Guidelines
Mafron gas	Import					
Other gaseous hydrocarbons	Import			0.001	0.0001	IPCC 2006 Guidelines
Other than petroleum gas	Import			0.001	0.0001	IPCC 2006 Guidelines
Water gas	Import			0.001	0.0001	IPCC 2006 Guidelines
Coal gas, water gas, producer gas and similar gases, other						
than petroleum gases and						
other gaseous hydrocarbons;n.e.c	Import			0.001	0.0001	IPCC 2006 Guidelines
Briquettes, coke	Import	28.2	107.06	0.001	0.0015	IPCC 2006 Guidelines
Coal rejects	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coal washed	Import	25.8	94.6	0.001	0.0015	IPCC 2006 Guidelines
Coke breeze	Import	38.7	44.7	0.001	0.0001	IPCC 2006 Guidelines
OURC DIEEZE	mport	50.7	44.7	0.001	0.0001	

Coke cp	Import	28.2	107.06	0.001	0.0015	IPCC 2006 Guidelines
Coke dust	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke hard	Import	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke mixed	Import	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke peat	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke seme	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke soft	Import	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
Lignite briquettes	Import	9.69	106.51	0.001	0.0015	IPCC 2006 Guidelines
Coke and semi-coke of coal, of lignite or of peat; retort carbon n.e.c	Import	28.2	106.51	0.001	0.0015	IPCC 2006 Guidelines
	Import					
Benzol	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar by-product	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar crude	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar Oil	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar peat	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar processed	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar product	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Tar from Coal or Lignite	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Fuel, aviation turbine	Import	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Petrol / motor spirit/ gasoline	Import	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Motor spirit (gasolene), including aviation spirit n.e.c	Import	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Spirit type (gasolene type) jet fuel	Import	44.3	69.3	0.003	0.0006	IPCC 2006 Guidelines
Light petroleum oil	Import	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Other light petroleum oils and light oils obtained from bituminous minerals n.e.c	Import	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
	•					
Kerosene	Import	43.8	71.9	0.003	0.0006	IPCC 2006 Guidelines
Superior kerosene	Import	44.1	71.6	0.003	0.0006	IPCC 2006 Guidelines
Kerosene n.e.c	Import	43.8	71.9	0.003	0.0006	IPCC 2006 Guidelines
Kerosene type jet fuel	Import	44.1	71.6	0.003	0.0006	IPCC 2006 Guidelines
Diesel	Import	43	74.1	0.003	0.0006	IPCC 2006 Guidelines

High speed diesel	Import	43	74.1	0.003	0.0006	IPCC 2006 Guidelines
Medium petroleum oil, n.e.c.	Import	42.3	73.3	0.003	0.0006	IPCC 2006 Guidelines
Gas oils	Import	43	74.1	0.003	0.0006	IPCC 2006 Guidelines
Fuel oils n.e.c	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Furnace oil	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Grease, petroleum etc.	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil lubricating used in spindle/ spinnings the like	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil used for tempering	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil used in leather	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil used in transformer	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, base	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, c.p.w	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, cuttings	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, middle	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, mineral white	Import	40.4	73.3	0.003	0.0006	IPCC 2006 Guidelines
Oil, solvent	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Oil, used in hydrolic machine	Import	40.4	77.4	0.003	0.0006	IPCC 2006 Guidelines
Para cresol	Import	44.5	73.3	0.003	0.0006	IPCC 2006 Guidelines
Lubricating pet	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Compressed natural gas (CNG)	Import	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Gas natural	Import	48	56.1	0.001	0.0001	IPCC 2006 Guidelines
Liquid or liquid gas fuel for lighter	Import	40.4	73.3	0.003	0.0006	IPCC 2006 Guidelines
Liquidified petroleum gas (LPG)	Import	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
Propane and butanes, liquefied, n.e.c.	Import	47.3	63.1	0.001	0.0001	IPCC 2006 Guidelines
Butadiene	Import	-1.5	00.1	0.001	0.0001	
Butylene	Import					
C-4 Raffinate	Import					
Ethylene	Import					
,	Import					

N-butene	Import					
Polyisobutylene, P	Import					
Propylene	Import					
all gases, except natural gas n.e.c	Import					
Bituminous oil	Import	8.9	107	0.001	0.0015	IPCC 2006 Guidelines
Paraffin incl wax	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Petroleum coke	Import	32.5	97.5	0.003	0.0006	IPCC 2006 Guidelines
Petroleum coke calcined	Import	32.5	97.5	0.003	0.0006	IPCC 2006 Guidelines
Petroleum jelly	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Tarfelt	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Wax chlorinated paraffin	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Wax polythene	Import	40.2	73.3	0.003	0.0006	IPCC 2006 Guidelines
Petroleum products obtained				0.000	0.0000	
from bitumen n.e.c.	Import	8.9	107	0.003	0.0006	IPCC 2006 Guidelines
Ammonia gas	Import					
Ammonia liquid	Import					
Coal tar processed	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar, crude	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal tar, pitch	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Oil, coal tar	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Pitch other than hard/medium	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Pitch, hard/medium	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Other coal tar oil pitch						
products, n.e.c.	Import	28	80.7	0.001	0.0015	IPCC 2006 Guidelines
Coal consumed	Import	25.8	94.6	0.001	0.0015	IPCC 2006 Guidelines
Petrol, diesel, oil, lubricants consumed	Import	0	0	0.003	0.0006	IPCC 2006 Guidelines
Gas consumed	Import	0	0	0.001	0.0001	IPCC 2006 Guidelines
Other fuel consumed	Import	0	0	0	0	
Source: Authors' compilation	on					

Annexure 4: Classification of hydrocarbons as feedstock

	Treat as feedstock (if output NPCMS/ASICC is matching as fuel/non-energy product form this list)								
Detailed description of fuel material	NIC-08 codes (to be treated as a feedstock and later have to perform mass balance)	NIC-04 codes (to be treated as a feedstock and later have to perform mass balance)							
Anthracite (raw coal)	191, 35	231, 40							
Coal	191, 35	231, 40							
Coal (under sized)	191, 35	231, 40							
Coal ash	191, 35,2394	231, 40, (new: 2694)							
Coal compressed (middlings)	191, 35	231, 40							
Coal for carbonisation	191, 35, 22	231, 40, 25							
Coal slack	191, 35	231, 40							
Coal, not agglomerated, n.e.c.	191, 35	231, 40							
Briquettes, coal, coal dust	191, 35	231, 40							
Briquettes and similar solid fuels manufactured from coal, n.e.c.	191, 35	231, 40							
Peat, hard/medium	191, 35	231, 40							
Peat, other than hard/medium	191, 35	231, 40							
Peat, n.e.c.	191, 35	231, 40							
Lignite, not agglomerated	191, 35	231, 40							
Lignite, agglomerated	191, 35	231, 40							
Gas compressed natural	19203, 35, 20121, 20122, 20123	23203, 40, 24123, 24124, 24122, 24121							
liquified petroleum gas	19203,35	23203, 40							
natural gas	19203, 35, 20121, 20122, 20123	23203, 40, 24123, 24124, 24122, 24121							
Gas, n.e.c	19203, 35, 20121, 20122, 20123	23203, 40, 24123, 24124, 24122, 24121							
Shale Oil	19201, 19202, 19209, 35, 2022, 2023, 2211	23201, 23202, 23209, 40, 2422, 2424, 2511							
Lignite briquettes	191, 35	231, 40							
Coal gas	191, 35	231, 40							
Other gaseous hydrocarbons	19203, 35	23203, 40							
Briquettes, coke	191, 35	231, 40							
Coal rejects	191, 35	231, 40							
Coal washed	191, 35	231, 40							
Coke breeze	191, 35	231, 40							

Coke cp	191, 35	231, 40
Coke dust	191, 35	231, 40
Coke hard	191, 35	231, 40
Coke mixed	191, 35	231, 40
Coke peat	191, 35	231, 40
Coke seme	191, 35	231, 40
Coke soft	191, 35	231, 40
Coke and semi-coke of coal, of lignite or of peat; retort carbon n.e.c	191, 35, 22	231, 40, 25
Benzol	191, 35, 20, 21	231, 40, 24, 2423
Coal tar by-product	191, 35	231, 40
Coal tar crude	191, 35	231, 40
Coal tar Oil	191, 35	231, 40
Coal tar peat	191, 35, 22, 27	231, 40, 25, 31
Coal tar processed	191, 35	231, 40
Coal tar product	191, 35	231, 40
Tar from Coal or Lignite	191, 35	231, 40
Fuel, aviation turbine	19202, 19209, 2021, 2022, 2023, 1811	23202, 23209, 2421, 2422, 2424, 2221
Light petroleum oil	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Other light petroleum oils and light oils obtained from bituminous minerals n.e.c	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Kerosene	19202, 19209, 2021, 2022, 2023, 1811	23202, 23209, 2421, 2422, 2424, 2221
Superior kerosene	19202, 19209, 2021, 2022, 2023, 1811	23202, 23209, 2421, 2422, 2424, 2221
Kerosene n.e.c	19202, 19209, 2021, 2022, 2023, 1811	2424, 2221
Kerosene type jet fuel	19202, 19209, 2021, 2022, 2023, 1811	23202, 23209, 2421, 2422 2424, 2221
Medium petroleum oil, n.e.c.	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Gas oils	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Fuel oils n.e.c	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Furnace oil	19202, 19209, 2022, 2023	23202, 23209, 2422, 2424
Compressed natural gas (CNG)	19203, 35, 20121, 20122, 20123 19203, 35, 20121, 20122,	23203, 40, 24123, 24124 24122, 24121 23203 40 24123 24124
Gas natural	19203, 35, 20121, 20122, 20123	23203, 40, 24123, 24124 24122, 24121
Liquid or liquid gas fuel for lighter	19203,35	23203, 40

Liquidified petroleum gas (LPG)	19203, 35	23203, 40
Propane and butanes, liquefied, n.e.c.	19203, 35	23203, 40
Petroleum coke	23994, 24202, 19202, 19209, 35, 2022, 2023, 2211	26994, 27203, 23202, 23209, 40, 2422, 2424, 2511
Petroleum coke calcined	23994, 24202, 19202, 19209, 35, 2022, 2023, 2211	26994, 27203, 23202, 23209, 40, 2422, 2424, 2511
Petroleum products obtained from bitumen n.e.c.	19201, 19202, 19209, 2022, 2023	23201, 23202, 23209, 24124, 24122, 24121
Coal tar, crude	191, 35	231, 40
Coal tar, pitch	191, 35	231, 40
Oil, coal tar	191, 35	231, 40
Pitch other than hard/medium	191, 35	231, 40
Pitch, hard/medium	191, 35	231, 40
Other coal tar oil pitch products, n.e.c.	191, 35	231, 40
Gas consumed	19203, 35, 20121, 20122, 20123	23203, 40, 24123, 24124, 24122, 24121
Source: Authors' compilation		

Description	Conversion Factor
Anthracite (raw coal)	
Benzol	
Briquettes and similar solid fuels manufactured from coal, n.e.c.	
Briquettes, coal, coal dust	
Briquettes, coke	
Coal	
Coal (under sized)	
Coal ash	
Coal bed Methane	
Coal compressed (middlings)	
Coal consumed	
Coal for carbonisation	

Coal gas, water gas, producer gas and similar gases, other than	
petroleum gases and other gaseous hydrocarbons;n.e.c	1
Coal rejects	1
Coal slack	1
Coal tar by-product	1
Coal tar crude	1
Coal tar Oil	1
Coal tar peat	1
Coal tar processed	1
Coal tar product	1
Coal tar, crude	1
Coal tar, pitch	1
Coal washed	1
Coal, not agglomerated, n.e.c.	-
Coke and semi-coke of coal, of lignite or of peat; retort carbon n.e.c	1
Coke breeze	1
Coke cp	
Coke dust	
Coke hard	
Coke mixed	
Coke peat	
Coke seme	
Coke soft	
Diesel	0.837520938
Fuel oils n.e.c	0.9765625
Fuel, aviation turbine	0.798722045
Furnace oil	0.000976563
Gas compressed natural	0.000711238
Gas consumed	0.000711238

Gas oils	0.856164384
Gas, n.e.c	1
High speed diesel	0.826446281
Kerosene	0.798722045
Kerosene n.e.c	0.798722045
Kerosene type jet fuel	1
Light petroleum oil	0.862068966
Lignite briquettes	1
Lignite, agglomerated	1
Lignite, not agglomerated	1
Liquid or liquid gas fuel for lighter	1
Liquidified petroleum gas (LPG)	1
Liquified natural gas	0.00045
Medium petroleum oil, n.e.c.	0.825082508
Motor spirit (gasolene), including aviation spirit n.e.c	0.734214391
natural gas	0.000711238
Oil, coal tar	1
Other coal tar oil pitch products, n.e.c.	1
Other gaseous hydrocarbons	1
Other light petroleum oils and light oils obtained from bituminous minerals n.e.c	0.862068966
Other than petroleum gas	1
Peat, hard/medium	1
Peat, n.e.c.	1
Peat, other than hard/medium	1
Petrol / motor spirit/ gasoline	1
Petrol, diesel, oil, lubricants consumed	
Petroleum coke	1
Petroleum coke calcined	1
Petroleum products obtained from bitumen n.e.c.	1
Pitch other than hard/medium	1

Pitch, hard/medium	1
Propane and butanes, liquefied, n.e.c.	1
Re-gasified LNG	0.000711238
Shale Oil	1
Spirit type (gasolene type) jet fuel	0.8
Superior kerosene	0.778210117
Tar from Coal or Lignite	1
Water gas	1
Source: Authors' compilation	

	NIC 2008 codes at 2-digit level																		
Fuel Type	10	11	13	15	17	18	19	20	21	22	23	24	25	26	27	28	29	30	32
Diesel	0%	0%	0%	13%	0%	0%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Fuel oils n.e.c	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%	0%	3%	0%
Fuel, aviation turbine	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%
Furnace oil	94%	100 %	99%	0%	0%	0%	0%	79%	100 %	0%	58%	99%	100 %	98%	83%	0%	94%	0%	0%
Gas oils	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
High speed diesel	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	97%	0%	0%	0%
Kerosene	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Kerosene n.e.c	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Light petroleum oil	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Liquidified petroleum gas (LPG)	0%	0%	0%	0%	100 %	0%	100 %	20%	0%	76%	0%	0%	0%	2%	16%	0%	2%	97%	100 %
Medium petroleum oil, n.e.c.	0%	0%	0%	0%	0%	99%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Other light petroleum oils and light oils obtained from bituminous minerals n.e.c	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Petroleum coke	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	40%	1%	0%	0%	0%	0%	0%	0%	0%
Petroleum coke calcined	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%
Petroleum products obtained from bitumen n.e.c.	6%	0%	0%	87%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shale Oil	0%	0%	0%	0%	0%	0%	0%	1%	0%	16%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Superior kerosene	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Grand Total	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Source: Authors' analysis																			

	Emission	Emission Factor	Emission Factor	11-14
Metal/Chemical/Mineral	Factor (CO ₂)	(CH₄)	(N ₂ O)	Unit
Cement	0.537			tCO ₂ /tclinker
Ammonia	1.76715			tCO ₂ /tproduct
Nitric Acid			0.01	tCO ₂ /tproduct
Adipic Acid			0.3	tCO ₂ /tproduct
Caprolactum			0.009	tCO ₂ /tproduct
Glyoxal			0.0052	
Calcium Carbide	1.1			tCO ₂ /tproduct
Fitanium Dioxide	1.385			tCO ₂ /tproduct
Soda Ash	0.138			tCO ₂ /tproduct
Nethanol	0.67	0.023		tCO ₂ /tproduct
Ethylene	1.73	0.003		tCO ₂ /tproduct
Ethylene Dichloride	0.296			tCO ₂ /tproduct
/inyl Chloride	0.47	0.00226		tCO ₂ /tproduct
Ethylene Oxide	0.863	1.79		tCO ₂ /tproduct
Acrylonitrile	1	0.18		tCO ₂ /tproduct
Carbon Black	2.62	0.06		tCO ₂ /tproduct
Aluminium	1.65			tCO ₂ /tmetal
₋ead	0.52			tCO ₂ /tmetal
linc	0.53			tCO ₂ /tmetal
ubricant Use in Coal	73			tCO ₂ /tonne

State	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
Haryana	0%	0%	0%	0%	0%	1%	1%	1%	1%	1%	1%	1%
Punjab	3%	3%	3%	3%	0%	3%	2%	2%	2%	2%	2%	2%
Rajasthan	14%	14%	14%	15%	16%	16%	16%	17%	17%	17%	17%	17%
Himachal Pradesh	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Delhi	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Jammu & kashmir	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Uttarakhand	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	1%	1%
Assam	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Meghalaya	0%	0%	0%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bihar	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Jharkhand	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Odisha	2%	2%	2%	2%	3%	2%	3%	2%	2%	2%	2%	2%
West Bengal	2%	2%	2%	2%	2%	3%	3%	3%	3%	3%	3%	3%
Chattisgarh	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%
Andhra Pradesh	14%	14%	15%	15%	16%	15%	14%	13%	13%	13%	13%	13%
Tamil Nadu	10%	10%	11%	11%	11%	11%	10%	10%	10%	10%	10%	10%
Karnataka	7%	7%	7%	6%	7%	7%	7%	7%	7%	7%	7%	7%
Kerela	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Gujarat	10%	10%	10%	9%	8%	8%	8%	9%	9%	9%	9%	9%
Maharashtra	8%	8%	8%	8%	8%	7%	6%	7%	7%	7%	7%	7%
Uttar Pradesh	3%	3%	3%	3%	3%	4%	5%	5%	5%	5%	5%	5%
Madhya Pradesh	12% ailability of da	12%	12%	12%	11%	11%	10%	10%	10%	10%	10%	10%

IPCC Sect or	Descriptio n							Productio	n (000 MT)					
2B	Chemical Industry		2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
2B1	Ammonia Production	Total Producti on	11480.8 5	11387.3 5	11507.1 3	11252.3 4	11286. 56	11961.5 0	12397.6 5	12455.1 4	12790.7 9	12869.8 8	12796. 10	13866.9 8
	Gujarat	Prod. Capacity Producti	32.64% 3747.35	32.64% 3716.83	32.64% 3755.93	32.64% 3672.76	32.64% 3683.9	32.64% 3904.23	32.64% 4046.59	32.64% 4065.36	32.64% 4174.91	32.64% 4200.73	32.64% 4176.6	32.64% 4526.18
	Uttar Pradesh	on Prod. Capacity	25.19%	25.19%	25.19%	25.19%	3 25.19%	25.19%	25.19%	25.19%	25.19%	25.19%	5 25.19%	25.19%
		Producti on	2892.03	2868.47	2898.65	2834.46	2843.0 8	3013.10	3122.97	3137.45	3222.00	3241.92	3223.3 4	3493.0
	Rajasthan	Prod. Capacity Producti	16.95% 1946.00	16.95% 1930.16	16.95% 1950.46	16.95% 1907.27	16.95% 1913.0	16.95% 2027.47	16.95% 2101.40	16.95% 2111.15	16.95% 2168.04	16.95% 2181.44	16.95% 2168.9	16.95% 2350.4
	Andhra Pradesh	on Prod. Capacity	3.34%	3.34%	3.34%	3.34%	7 3.34%	3.34%	3.34%	3.34%	3.34%	3.34%	4 3.34%	3.34%
		Producti on	383.46	380.34	384.34	375.83	376.97	399.51	414.08	416.00	427.21	429.85	427.39	463.16
	West Bengal	Prod. Capacity Producti	10.24% 1175.64	10.24% 1166.06	10.24% 1178.33	10.24%	10.24% 1155.7	10.24% 1224.86	10.24% 1269.52	10.24% 1275.41	10.24% 1309.78	10.24% 1317.88	10.24% 1310.3	10.24% 1419.9
	Maharashtr a	on Prod. Capacity	7.45%	7.45%	7.45%	7.45%	4 7.45%	7.45%	7.45%	7.45%	7.45%	7.45%	2 7.45%	7.45%
		Producti on	855.32	848.36	857.28	838.30	840.85	891.13	923.63	927.91	952.91	958.81	953.31	1033.0
	Kerala	Prod. Capacity Producti	4.19% 481.05	4.19% 477.13	4.19% 482.15	4.19%	4.19% 472.91	4.19% 501.19	4.19% 519.46	4.19% 521.87	4.19% 535.93	4.19% 539.25	4.19% 536.16	4.19%
2B2	Nitric Acid Production	on Total Producti on						Not Av	ailable					
2B3	Adipic Acid Production	Total Producti on						Not Av	ailable					
2B4			l		Capr	olactam, Gl	yoxal and G	Iyoxylic Aci	d Production					

	Caprolactu m	Total Producti on	122	117	121	86	84	123	123	118	99	85	87	86
	Kerala	Prod. Capacity	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%	41.70%
		Producti on	50.874	48.789	50.457	35.862	35.028	51.291	51.291	49.206	41.283	35.445	36.279	35.862
	Gujarat	Prod. Capacity	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%	58.30%
		Producti on	71.126	68.211	70.543	50.138	48.972	71.709	71.709	68.794	57.717	49.555	50.721	50.138
	Glyoxal						1	Not Available	e					
	Glyoxalic Acid													
2B5							Carbide Pro	oduction						
	Calcium Carbide	Total Producti on	52.73	64.64	91.95	97.41	66.55	22.02	44.7	66.39	70.98	78.78	87.18	83.47
	Rajasthan	Prod. Capacity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		Producti on	52.73	64.64	91.95	97.41	66.55	22.02	44.7	66.39	70.98	78.78	87.18	83.47
2B6	Titanium Dioxide Production	Total Producti on	57.56	60.29	62.92	59.15	53.28	61.32	64.02	52.14	50.14	52.78	47.88	58.83
	Kerala	Prod. Capacity	77%	77%	77%	77%	77%	77%	77%	77%	77%	77%	82%	82%
		Producti on	44.3212	46.4233	48.4484	45.5455	41.025 6	47.2164	49.2954	40.1478	38.6078	40.6406	39.261 6	48.2406
	Tamil Nadu	Prod. Capacity	23%	23%	23%	23%	23%	23%	23%	23%	23%	23%	18%	18%
		Producti on	13.2388	13.8667	14.4716	13.6045	12.254 4	14.1036	14.7246	11.9922	11.5322	12.1394	8.6184	10.5894
2B7	Soda Ash Production	Total Producti on	2287.24	2298.24	2078.06	2005.51	1989.0 5	2058.34	2298.76	2410.82	2437.79	2392.17	2462	2583.01
	Gujarat	Prod. Capacity	96%	96%	96%	96%	96%	96%	96%	96%	96%	96%	96%	96%
		Producti on	2195.75 04	2206.31 04	1994.93 76	1925.28 96	1909.4 88	1976.00 64	2206.80 96	2314.38 72	2340.27 84	2296.48 32	2363.5 2	2479.68 96
	Kerala	Prod. Capacity	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%
		Producti on	91.4896	91.9296	83.1224	80.2204	79.562	82.3336	91.9504	96.4328	97.5116	95.6868	98.48	103.320 4

2B8					Pe	etrochemica	al and Carb	oon Black P	roduction					
2B8a	Methanol	Total Producti on	392.2	386.76	396.23	351.73	237.12	330.83	374.53	359.93	254.91	307.26	209.83	162.62
	Gujarat	Prod. Capacity	48%	48%	48%	48%	48%	48%	48%	48%	48%	48%	48%	48%
		Producti on	188.256	84253.4 4	37367.0 4	31257.6	37935. 36	39356.1 6	63225.6	64504.3 2	61804.8	44897.2 8	39498. 24	40492.8
	Maharashtr a	Prod. Capacity	43%	43%	43%	43%	43%	43%	43%	43%	43%	43%	43%	43%
		Producti on	168.646	75477.0 4	33474.6 4	28001.6	33983. 76	35256.5 6	56639.6	57785.1 2	55366.8	40220.4 8	35383. 84	36274.8
	Assam	Prod. Capacity	9%	9%	9%	9%	9%	9%	9%	9%	9%	9%	9%	9%
		Producti on	35.298	15797.5 2	7006.32	5860.8	7112.8 8	7379.28	11854.8	12094.5 6	11588.4	8418.24	7405.9 2	7592.4
2B8b	Ethylene	Total Producti on	2645	2719	2683	2810	2639	2515	2665	3320	3315	3346	3192	3727
	Gujarat	Prod. Capacity	51%	51%	51%	51%	51%	51%	51%	51%	51%	51%	54%	51%
		Producti on	1352.35	1390.18	1371.78	1436.71	1349.2 8	1285.88	1362.57	1697.46	1694.91	1710.76	1720.8 4	1905.56
	Maharashtr a	Prod. Capacity	8%	8%	8%	8%	8%	8%	8%	8%	8%	8%	9%	8%
		Producti on	221.87	228.08	225.06	235.71	221.37	210.96	223.55	278.49	278.07	280.67	290.50	312.63
	Uttar Pradesh	Prod. Capacity	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	11%	10%
		Producti on	264.13	271.52	267.92	280.61	263.53	251.15	266.13	331.54	331.04	334.13	345.83	372.18
	West Bengal	Prod. Capacity	13%	13%	13%	13%	13%	13%	13%	13%	13%	13%	8%	13%
		Producti on	353.93	363.84	359.02	376.01	353.13	336.54	356.61	444.26	443.59	447.74	242.08	498.72
	Haryana	Prod. Capacity	17%	17%	17%	17%	17%	17%	17%	17%	17%	17%	19%	17%
		Producti on	452.72	465.39	459.22	480.96	451.69	430.47	456.14	568.25	567.40	572.70	592.75	637.91
2B8c					Eth	nylene Dichl	oride and V	inyl Chloride	Monomer					
	Ethylene Dichloride	Total Producti on	593	263	220	267	277	445	454	435	316	278	285	277

	Gujarat	Prod. Capacity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		Producti on	593	263	220	267	277	445	454	435	316	278	285	277
	Vinyl Chloride Monomer	Total Producti on	541	308	280	289	303	674	672	689	669	735	718	791
	Gujarat	Prod. Capacity	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%	71.10%
		Producti on	384.651	218.988	199.08	205.479	215.43 3	479.214	477.792	489.879	475.659	522.585	510.49 8	562.401
	Maharashtr a	Prod. Capacity	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%	28.90%
		Producti on	156.349	89.012	80.92	83.521	87.567	194.786	194.208	199.121	193.341	212.415	207.50 2	228.599
2B8d	Ethylene Oxide	Total Producti on	79	88	96	114	117	154	164	169	172	191	185	188
	Uttarakhan d	Prod. Capacity	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%	0.03%
		Producti on	0.02	0.03	0.03	0.03	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06
	Maharashtr a	Prod. Capacity	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%	17.88%
		Producti on	14.13	15.73	17.16	20.38	20.92	27.54	29.32	30.22	30.75	34.15	33.08	33.61
	Gujarat	Prod. Capacity	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%	82.09%
		Producti on	64.85	72.24	78.81	93.58	96.05	126.42	134.63	138.73	141.19	156.79	151.87	154.33
2B8e	Acrylonitrile	Total Producti on	39	33	37	39	30	39	38	38	33	37	34	2
	Gujarat	Prod. Capacity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
		Producti on	39	33	37	39	30	39	38	38	33	37	34	2
2B8f	Carbon Black	Total Producti on	381.26	395.1	422.47	426.96	371.4	419.43	452.44	447.67	404.02	406.41	444.35	469.56
	West Bengal	Prod. Capacity	30.35%	30.35%	30.35%	30.35%	30.35%	30.35%	29.11%	29.11%	29.11%	29.11%	29.11%	29.11%
	.3	Producti on	115.71	119.91	128.22	129.58	112.72	127.30	131.71	130.32	117.61	118.31	129.35	136.69
	Gujarat	Prod. Capacity	27.73%	27.73%	27.73%	27.73%	27.73%	27.73%	26.59%	26.59%	26.59%	26.59%	26.59%	26.59%
		Producti on	105.72	109.56	117.15	118.40	102.99	116.31	120.30	119.04	107.43	108.06	118.15	124.86

Kerala	Prod. Capacity	9.90%	9.90%	9.90%	9.90%	9.90%	9.90%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%
	Producti on	37.74	39.11	41.82	42.27	36.77	41.52	42.98	42.53	38.38	38.61	42.21	44.61
Tamil Nadu	Prod. Capacity	4.28%	4.28%	4.28%	4.28%	4.28%	4.28%	8.21%	8.21%	8.21%	8.21%	8.21%	8.21%
	Producti on	16.32	16.91	18.08	18.27	15.90	17.95	37.15	36.75	33.17	33.37	36.48	38.55
Uttar Pradesh	Prod. Capacity	14.45%	14.45%	14.45%	14.45%	14.45%	14.45%	13.86%	13.86%	13.86%	13.86%	13.86%	13.86%
	Producti on	55.09	57.09	61.05	61.70	53.67	60.61	62.71	62.05	56.00	56.33	61.59	65.08
Maharashtr a	Prod. Capacity	8.99%	8.99%	8.99%	8.99%	8.99%	8.99%	8.62%	8.62%	8.62%	8.62%	8.62%	8.62%
	Producti on	34.28	35.52	37.98	38.38	33.39	37.71	39.00	38.59	34.83	35.03	38.30	40.48
Punjab	Prod. Capacity	4.28%	4.28%	4.28%	4.28%	4.28%	4.28%	4.11%	4.11%	4.11%	4.11%	4.11%	4.11%
	Producti on	16.32	16.91	18.08	18.27	15.90	17.95	18.60	18.40	16.61	16.70	18.26	19.30
Urea (used for calculating emissions from ammonia)	Total Producti on	20263	20098	20310.0 0	19860.0 0	19920. 00	21112.0 0	21881.0 0	21984.0 0	22575.0 0	22715	22585	24475
Ammonia Production(via urea)	Total Producti on	11482.3 7	11388.8 7	11509.0 0	11254.0 0	11288. 00	11963.4 7	12399.2 3	12457.6 0	12792.5 0	12871.8 3	12798. 17	13869.1 7
Ammonia Import	Total	1.52	1.52	1.87	1.66	1.44	1.97	1.58	2.46	1.71	1.96	2.07	2.19

State	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	Source
Orissa	55%	55%	55%	55%	55%	55%	59%	60%	62%	61%	55%	54%	IBM
Chhattisgarh	17%	17%	17%	17%	17%	17%	16%	15%	14%	15%	16%	14%	Mineral Yearbook
Uttar Pradesh	27%	27%	27%	27%	27%	27%	25%	25%	23%	24%	20%	17%	(Metals
Madhya Pradesh	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	14%	review)

Annexure	11: State-wise sha	are of lead produ	uction
Year	Production(tonnes)	State	Share
2004-05	15657	Rajasthan	100%
2005-06	23817	Rajasthan	100%
2006-07	44627	Rajasthan	100%
2007-08	58246	Rajasthan	100%
2008-09	60323	Rajasthan	100%
2009-10	64319	Rajasthan	100%
2010-11	57294	Rajasthan	100%
2011-12	92100	Rajasthan	100%
2012-13	118317	Rajasthan	100%
2013-14	122595	Rajasthan	100%
2014-15	127142	Rajasthan	100%
2015-16	145257	Rajasthan	100%
Source: Au	uthors' compilation		

Year	State	Quantity	Source
2015-16	Rajasthan	758944	
2015-16	Kerala	0	-
2014-15	Rajasthan	732792	-
2014-15	Kerala	0	IBM yearbook 14
2013-14	Rajasthan	749168	
2013-14	Kerala	17362	-
2012-13	Rajasthan	676921	-
2012-13	Kerala	27307	
2011-12	Rajasthan	758717	
2011-12	Kerala	24930	IBM yearbook 12
2010-11	Rajasthan	712471	·-··· ; ······
2010-11	Kerala	27931	
2009-10	Rajasthan	578411	http://www.mrai.org.in/site/assets/files/5229/pugazhenty.pd

2009-10	Kerala	35352	
2008-09	Rajasthan	551724	
2008-09	Kerala	30443	
2007-08	Rajasthan	426323	
2007-08	Kerala	31903	
2006-07	Rajasthan	354423	
2006-07	Kerala	26522	
2005-06	Rajasthan	275392	lack of available literature; used the last available
2005-06	Kerala	20608	production shares
2004-05	Rajasthan	222360	
2004-05	Kerala	16640	

E 1	04-4	0004.05	0005.00	0000 0-	0007.00	0000.00	0000 40	0040 44	0044.40	0040.40	0040.44	004445	004540
Fuel	States	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16
Coal	Andhra Pradesh	9%	8%	8%	8%	8%	9%	9%	9%	9%	0%	0%	0%
	Arunachal Pradesh	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Assam	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Chhattisgarh	17%	17%	18%	18%	19%	19%	20%	20%	20%	21%	20%	19%
	Jammu & Kashmir	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Jharkhand	19%	20%	19%	19%	18%	19%	19%	19%	18%	19%	19%	18%
	Madhya Pradesh	13%	13%	13%	14%	14%	13%	12%	12%	13%	12%	13%	16%
	Maharashtra	8%	8%	8%	7%	7%	7%	7%	7%	6%	6%	6%	6%
	Meghalaya	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	0%	1%
	Odisha	16%	16%	18%	18%	19%	19%	18%	18%	18%	19%	19%	20%
	Telangana										8%	8%	9%
	Uttar Pradesh	4%	4%	3%	2%	2%	2%	3%	3%	3%	2%	2%	2%
	West Bengal	6%	6%	5%	5%	4%	4%	4%	4%	4%	5%	5%	4%
Lignite	TamilNadu	5%	5%	5%	4%	4%	4%	4%	4%	4%	4%	4%	4%
	Gujarat	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%

	Rajasthan	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	2%	1%
Source: Authors' compilation													