

Methodology Note National & State Level

Greenhouse Gas Estimates 2005 to 2015

September 2019

Agriculture, Forestry and Other Land Use Sector (AFOLU)

Authors Samiksha Dhingra Deepshikha Singh Raman Mehta Sector Lead

An initiative supported by

Usage Policy	Any re-production or re-distribution of the material(s) and information displayed and published on the Website/GHG Platform India/Portal shall be accompanied by appropriate citation and due acknowledgment to Vasudha Foundation and the GHG Platform India for such material(s) and information. You must give appropriate credit, provide a link, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the GHG Platform India endorses you or your use. Data sheets may be revised or updated from time to time. The latest version of each data sheet will be posted on the website. To keep abreast of these changes, please email us at info@ghgplatform-india.org so that we may inform you when data sheets have been updated.
Citation	Dhingra, S., Singh, D., and Mehta, R. (2019). Greenhouse Gas Emission Estimates from AFOLU (Agriculture, Forestry and Other Land Use) Sector in India at the Subnational Level (Version/edition 3.0). New Delhi. GHG Platform India Report – Vasudha Foundation. Available at: http://www.ghgplatform-india.org/methdolo-afolu-sector [Accessed Day, MO. Year]
Disclaimer	The data used for arriving at the results of this study is from published, secondary sources, or wholly or in part from official sources that have been duly acknowledged. The veracity of the data has been corroborated to the maximum extent possible. However, GHG Platform India shall not be held liable and responsible to establish the veracity of or corroborate such content or data and shall not be responsible or liable for any consequences that arise from and/or any harm or loss caused by way of placing reliance on the material(s) and information displayed and published on the website or by further use and analysis of the results of this study. During peer review, inquiries and analytical procedures were followed to ascertain whether any or no material modifications to the findings are necessary and whether the methods followed are in conformity with generally accepted guidance and GHG accounting principles. The findings and conclusions in this methodology note are those of the author(s) and do not necessarily represent the views of the peer reviewers or WRI India.

Version Information / Revision history

Version	Date	Brief description on changes from previous version
3.0	25 September 2019	This document contains information on assumptions and the methodology
		followed to estimate emissions from the energy sector at the national level for
		the extended time period of 2005-15.
2.0	28 Sep 2017	This document contains information on assumptions and the methodology
		followed to estimate emissions from the energy sector at the national level for
		the extended time period of 2005-13.
1.0	15 July 2016	This document contains information on assumptions and the methodology
		followed to estimate emissions from the energy sector at the national level for
		the time period of 2007-13.

Foreword

On December 2015, the international community took a significant step towards addressing the global challenge of climate change by endorsing the Paris Agreement at the 21st session of the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change. The milestone Paris Agreement will serve as a foundation for concerted international action to address the threat posed by climate change.

It is now more than clear that climate change is not the responsibility of national government only. It will impact every aspect of the society and therefore, role of non-state actors are more crucial in these testing times. Non-state actors like civil societies and research organizations can inform and help national government in devising robust climate actions and strategies. The first step to devise a robust climate action plan is creating greenhouse gas (GHG) estimates for all relevant economic sectors for recent years.

With the above background, few Indian research organizations came together to form GHG Platform – India, which is a civil society initiative providing independent estimation and analysis of India's GHG emissions. The platform is conceptualized with a noble intention to assist the national government by helping address existing data gaps and data accessibility issues, extending beyond the scope of national inventories, and increasing the volume of analytics and policy dialogue on India's GHG emissions sources, profile, and related policies.

The platform hosted GHG estimates for all key economic sectors for the period of 2005 - 2013 by accounting carbon dioxide, methane and nitrous oxide, both at national and state level. In the present edition, the time series have been extended and the report now presents GHG estimates for the period 2005 - 2015/16 across all key economic sectors. The report also highlights the trend in GHG emissions across the sectors and transparently documents all the assumptions, activity data and emission factors that were used to arrive at GHG estimates.

The GHG estimates presented in the report follows 2006 IPCC guidelines for national GHG inventories and associated good practice guidance. Further, the report went through rigorous peer review and independent technical review process to ensure accuracy, transparency, consistency, completeness and relevance. On behalf of the platform, we hope that the report will be useful to all relevant stakeholders.

Credits

Led and coordinated by

Srinivas Krishnaswamy Raman Mehta Samiksha Dhingra Deepshikha Singh

Peer Reviewer

The authors would like to express their sincere gratitude to Mr. Subrata Chakrabarty and Mr. Chirag Gajjar from World Resources Institute India (WRII) for their valuable contribution towards comprehensive review of the methodology note.

Funder

Special thanks to Shakti Sustainable Energy Foundation (SSEF) for providing financial support towards this endeavour.

Editing & Design

Designed and formatted by Priya Kalia – Communications, Vasudha Foundation. Design reviewed by Communications Team (All partner Organizations), GHG Platform India Cover Image Photo by freestocks.org from Pexels

Contributors

AFOLU Sector Samiksha Dhingra (Vasudha Foundation) Deepshikha Singh (Vasudha Foundation) Raman Mehta (Vasudha Foundation)

Acknowledgements

Vasudha Foundation would like to thank all the platform partners of the GHG Platform India, namely, Council on Energy, Environment and Water (CEEW), Center for Study of Science, Technology and Policy (CSTEP), ICLEI Local Governments for Sustainability- South Asia, and World Resources Institute (WRI) India for their continuous support to the Platform.

We also express our deep gratitude to Shakti Sustainable Energy Foundation for the grant support. to the platform for the third year in a row.

We acknowledge with gratitude, WRI India for providing us technical guidance in undertaking the study and conducting a comprehensive review of this report.

We further would like to acknowledge and express our gratitude to the National Remote Sensing Centre, Hyderabad for providing us the Land Use Change Matrix for the period of 2006-2013.

CONTENTS

Executiv	ve Summary	4
Key H	lighlights	4
ES 1.	Background information of GHG emission estimates	4
ES 2.	Summary of GHG sources and sinks	5
ES 3.	Summary of GHG trend	5
1. Int	roduction and Background	6
1.1	Context	6
1.2	GHG Coverage	6
1.3	Key economic sectors covered	6
1.4	Boundary of GHG estimates	7
1.5	Reporting Period	7
1.6	Outline of GHG estimates	7
1.7	Institutional Information	7
1.8	Data collection process and Storage	8
1.9	Quality Control (QC) and Quality Assurance (QA)	8
1.10	General assessment of completeness	9
1.11	Recommended Improvements1	0
2. Tre	ends in GHG emissions1	0
2.1	Trend in aggregated GHG emissions1	0
2.2	Trend in GHG emissions by type of GHG1	1
2.3	Key drivers of the emission trends in AFOLU sector1	2
3. AF	OLU1	4
3.1	Overview of the sector1	4
3.2	Analysis of sectoral emissions1	5
3.3	State-wise analysis of emissions1	6
3.4	Sectoral Quality Control (QC) and Quality Assurance (QA)	0
3.5 3	A Livestock	0
3A1.	Enteric Fermentation	0
3.5.1	Category description	0
3.5.2	Methodology	1
3.5.3	Recalculation	4
3.5.4	Uncertainties	4
3.5.5	Recommended Improvements	5
3.6 3	A2. Manure Management	5

3.6.1 C	ategory description
3.6.2 N	Aethodology6
3.6.3	Recalculation11
3.6.4	Uncertainties11
3.6.5	Recommended Improvements12
3.7 3B	Land12
3B1 Fo	restland12
3.7.1	Category description
3.7.2	Methodology13
3.7.3	Recalculation14
3.7.4	Uncertainty15
3.7.5	Recommended Improvements15
3.8 3B	2 Cropland15
3.8.1 C	ategory description
3.8.2	Methodology16
3.8.3	Recalculation19
3.8.4	Uncertainty19
3.8.5	Recommended Improvements
3.9	3B3 Grassland21
3.9.1 C	Category description
3.9.2	Methodology21
3.9.3	Recalculation
3.9.4	Uncertainty
3.9.5	Recommended Improvements
3.10	3B5 Settlements
3.10.1	Category description
3.10.2	Methodology26
3.10.3	Recalculation
3.10.4	Uncertainty
3.10.5	Recommended Improvements
3.11	3B6 Other Land
3.11.1	Category description
3.11.2	Methodology
3.11.3	Recalculation
3.11.4	Uncertainty

3.11.5 Recommended Improvements	32
3.12 3C Aggregate Sources and Non-CO $_2$ Emission Sources on Land	33
3C1a Biomass Burning in Forestland	33
3.12.1 Category description	33
3.12.2 Methodology	33
3.12.3 Recalculation	35
3.12.4 Uncertainty	35
3.12.5 Recommended Improvements	35
3.13 3C1b Biomass Burning in Cropland	
3.13.1 Category description	
3.13.2 Methodology	
3.13.3 Recalculation	
3.13.4 Uncertainty	
3.13.5 Recommended Improvements	
3.13 Estimation of Emissions from Agricultural Soils, including from:	
3C4 Direct N ₂ O emissions from managed soils and	
3C5 Indirect N ₂ O emissions from Managed Soils	
3.14.1 Category description	
3.14.2 Methodology	
3.14.3 Recalculation	41
3.14.4 Uncertainty	41
3.14.5 Recommended Improvements	41
3.15 3C7 Rice Cultivation	42
3.15.1 Category description	42
3.15.2 Methodology	42
3.15.3 Recalculation	44
3.15.4 Uncertainty	44
3.15.5 Recommended Improvements	44
4 Comparison with national inventories	45
Additional Information	49
Appendix	50
Annexure I	50
Annexure II	0
Annexure III	2
Annexure IV	3

Annexure V5
Annexure VI7
ANNEXURE VII9
Annexure VIII
Annexure IX13
Annexure X15
Annexure XI17
Annexure XII19
Annexure XIII
Annexure IVX23
Annexure XV25
Annexure XVI27
References
Abbreviations
List of Tables
List of Figures

Executive Summary

Key Highlights

- GHG emissions from this sector are dominated by two key source categories, viz., enteric fermentation and rice cultivation, which together accounts for approx. 76% of the GHG emissions in 2015 (excluding Land sub-sector). However, Land as a whole was a net remover of GHG emissions and removed nearly ~36% of the total emissions in 2015.
- CH₄ contributes maximum to the GHG emissions with contributing percentage of ~80% within the AFOLU sector followed by N₂O (~14%) and CO₂ (~6%) in 2015¹.

ES 1. Background information of GHG emission estimates

The AFOLU sector contributed almost 245.39 $MtCO_2e^2$ to the total GHG emissions of India in 2015. The detailed emissions of each of the key source categories and sub-categories is given in Table 1 below as per the IPCC format.

Table ES 1: Overview of GHG Emission Estimates by Gases and Sector for AFOLU sector ³								
IPCC ID	Key Source category	GHG Emissions (2015)						
		MtCO ₂	MtCH ₄	MtN ₂ O	MtCO ₂ e			
3	AFOLU	-117.18	14.53	0.178	243.128			
3A	Livestock		10.86	0.002	228.75			
3A1	Enteric Fermentation		9.86		206.97			
3A2	Manure Management		1.00	0.002	21.78			
3B	Land	-117.18			-117.18			
3B1	Forest Land	-124.44			-124.44			
3B2	Cropland	-1.32			-1.32			
3B3	Grasslands	0.66			0.66			
3B5	Settlements	0.49			0.49			
3B6	Other Lands	7.43			7.43			
3C	Aggregate Sources and non-CO ₂ emission		3.67	0.176	131.56			
	sources on land							
3C1a	Emissions from biomass burning in forest lands		0.21	0.003	5.27			
3C1b	Emissions from biomass burning in croplands		0.21	0.005	6.16			
3C4	Direct N ₂ O emissions from managed soils			0.134	41.46			
3C5	Indirect N ₂ O emissions from managed soils			0.034	10.52			
3C7	Rice Cultivation		3.24		68.14			

¹ Please refer to AFOLU sector file, worksheet 'Trends'

² Million tCO₂ equivalent

³ Please refer to AFOLU sector file, worksheet 'Summary"

ES 2. Summary of GHG sources and sinks

GHG emissions from the AFOLU sector mainly arises from three sub-sectors namely, Livestock, Land and Aggregate sources and non-CO₂ emissions sources on land. Notably, the Land sub-sector was a net remover of GHGs while the other two sub-sectors were net emitter. If the emissions were considered excluding the removals from the Land sub-sector, Livestock had the major contribution of 63% while Aggregate sources and non-CO₂ emissions sources on land represented 37% of the remaining AFOLU emissions from 2005 to 2015. Livestock sub-sector is the major contributor because India has the highest cattle population in terms of density and absolute numbers. Notably, in 2015 the Land sub-sector removed nearly 36% of the GHG emissions of the AFOLU sector in India from the atmosphere.

ES 3. Summary of GHG trend

In general, during the period of estimation, the GHG emissions from AFOLU sector have decreased, primarily due to increased removals of CO_2 from the forests. However, a bump in the overall emissions was registered from 2012 to 2013 owing to decreased removals from the land sub-sector⁴. The India specific GHG emissions value has been attained by adding up the state values for all the sub-sectors.

The major trends exhibited by this sector are depicted in the graph below.

⁴ GHG Platform India observes a dip in removals from 2012 to 2013 however, the BUR2 observes an increment from the same years in consideration. Commenting on the rationale for such increment is not possible as data and its source is unknown.

1. Introduction and Background

1.1 Context

The GHG estimates for the AFOLU sector being presented in this document are a part of a collaborative effort by GHG Platform India⁵ to build year on year estimates by collating and interpreting data that is available in the public domain. This can hopefully lead to greater discussion and debate on climate change policies and practises in India. The platform seeks to add value to various ongoing GHG estimation efforts by helping address existing data gaps and data accessibility issues, extending beyond the scope of national inventories, and by increasing the volume of analytics and policy dialogue on India's Greenhouse Gas emissions sources, profile, and related policies.

1.2 GHG Coverage

The greenhouse gases (GHG) accounted for this sector are Carbon Dioxide (CO₂), Methane (CH₄) and Nitrous Oxide (N₂O) with total carbon dioxide equivalent (CO₂e) using global warming potential (GWP) and global temperature potential (GTP) from Intergovernmental Panel on Climate Change (IPCC) Assessment Reports – Second Assessment Report (SAR) and Fifth Assessment Report (AR5).

Table 1.2: Global warming potential as per IPCC assessment reports						
Nome of the see	Formula	Global Warming Potential (GWP)				
Name of the gas		SAR	AR5			
Carbon dioxide	CO ₂	1	1			
Methane	CH ₄	21	28			
Nitrous oxide	N ₂ O	310	265			

Source: SAR Values from (IPCC 2006); AR5 Values from (IPCC, 2014)

1.3 Key economic sectors covered

Vasudha Foundation has estimated the GHG emissions for the AFOLU Sector based on the 2006 IPCC Guidelines for National GHG Inventories with all relevant calculation approaches. As indicated previously, specific source sub-categories included in the emission estimates are:

- 3A. Livestock
 - 3A1. Enteric Fermentation
 - 3A2. Manure Management
- 3B. Emissions from Land through various uses that land is put to by human interventions from
 - o 3B1. Forest Land
 - o 3B2. Cropland
 - 3B3. Grassland
 - o 3B5. Settlements
 - o 3B6. Other Lands
- 3C. Aggregate sources and non-CO₂ emissions sources on land
 - 3C1a. Emissions from biomass burning in forests
 - o 3C1b. Emissions from biomass burning in croplands

⁵ <u>http://www.ghgplatform-india.org/</u>

- 3C4. Direct N₂O emissions from managed soils
- o 3C5. Indirect N₂O emissions from managed soils
- o 3C7. Rice Cultivation

The emissions for all these categories have been estimated for the period 2005-2015. The emission estimates are based primarily on aggregated secondary data collected by Vasudha Foundation from nationally acceptable published documents and reports of relevant government departments, nodal agencies and research institutions in the AFOLU sector. Interactions were held with external experts and representatives to seek inputs on data availability and the emission estimation approach where required.

1.4 Boundary of GHG estimates

In this study, GHG emissions have been estimated at state level and then aggregated to national level for the AFOLU sector. The greenhouse gases covered under this analysis are namely Carbon Dioxide (CO_2), Methane (CH_4) and Nitrous Oxide (N_2O) with total carbon dioxide equivalent (CO_2e). Section 1.3 of the present report provides the details of key source categories covered under the AFOLU sector.

1.5 Reporting Period

Emissions are estimated from 2005 to 2015 in this study. The base year for these emission estimates is 2005. From the perspective of data availability and India's NDC, which chooses 2005 as the base year for its pledges, the year 2005 is of historical and administrative importance and hence, has been considered as the base year for these calculations.

1.6 Outline of GHG estimates

This exercise entails a time-series emission estimate for sectors mentioned in section 1.3 at the state (subnational) level, for the period 2005 to 2015. The estimations were based on literature review and followed the 2006 IPCC Guidelines for National GHG Inventories and other internationally acceptable guidance. Emissions were estimated based on fuel sources, sub-sectoral activities, and emission factors. Chapter 2 provides the trends in GHG emissions and the key drivers of emission trends in various sectors. Chapter 3 provides the overview of the AFOLU sector, detailed analysis of the sectoral emissions, methodology involved, source of activity data, and emission factors. Chapter 4 broadly compares the emissions estimated for 2007, 2010, and 2014 with the emissions reported by MoEFCC.

1.7 Institutional Information

<u>Vasudha Foundation, New Delhi</u> is involved in preparation of emission estimates from the AFOLU sector for GHG Platform India. Given below is the technical competence of the staff involved in this exercise:

Raman Mehta

Raman is currently the Director of Programmes at Vasudha Foundation. He is also the Lead for the work on Agriculture, Forests and Other Land Use Sector Emissions Estimations for the GHG Platform India Programme.

raman@vasudhaindia.org

Samiksha Dhingra

Samiksha is a Programmes Manager at Vasudha Foundation. She is managing the GHG Platform India project at Vasudha Foundation. Along with the secretariat responsibilities, she is also involved in emission estimation for the AFOLU sector. At Vasudha she has also worked on projects related to adaptation, energy mapping, renewable energy, and climate policy. Her areas of interest include urban services, environment, renewable energy, climate change, and sustainability.

samiksha@vasudhaindia.org

Deepshikha Singh

Deepshikha mostly worked on projects related to GHG emission reduction. Her key areas of work are climate change, sustainable development, environmental impact assessment and climate change. Presently, she is part of GHG Platform India where she is responsible for handling the Secretariat as well as the GHG emission estimates from the AFOLU sector.

deepshikha@vasudhaindia.org

1.8 Data collection process and Storage

To ensure estimates from the emission source categories represent the AFOLU sector in India, state and country-specific data has been used in the assessment to the extent possible. The data has been primarily collected through an extensive secondary research. The data collection exercise focussed on gathering reliable information from peer-reviewed published documents and reports of relevant government departments, nodal agencies and research institutions including Ministry of Agriculture and Farmers Welfare (MoAFW), Ministry of Statistics and Programme Implementation (MOSPI), Forest Survey of India (FSI) and National Remote Sensing Centre (NRSC) among others. The data collected was in various forms and units and has been assessed to ensure its applicability within the emission estimation boundaries and subsequently processed for further use. All the data collected for emission estimation was in the form of a soft copy, no data was obtained in its hard form.

The emission estimation method, reporting period, boundaries, year-wise activity data, emission factors and relevant parameters along with data sources and any assumptions to address gaps, and national-level emission results have been transparently recorded in this reporting document and in excel spreadsheets to provide clear understanding and to enable reconstruction of the emission estimations as required. All information collected and compiled for the emission estimates has been archived electronically in separate folders for future use as needed along with copies of relevant references or data sources. The final emission estimates and reporting documents are published and available on the GHG Platform India website (www.ghgplatform-india.org).

1.9 Quality Control (QC) and Quality Assurance (QA)

To prepare the expanded national-level emission estimates, secondary data research was undertaken for the years 2005 to 2015 for all sub-sectors with regards to parameters such as agricultural production, livestock population, land use change matrix etc. Interactions have been held with relevant experts as needed. The aggregate sources emission estimates for 2005 to 2013 have been revisited and have been refined based on updated information on activity data and related parameters. The emission estimation process involved regular discussions and reporting of progress between the project partners. Reporting formats were also developed for clear and transparent documentation and reporting of the methodology and results of the emission estimation.

Quality controls applied to the emission estimates include generic quality checks in terms of the calculations, processing, consistency, and clear recording and documentation as follows:

- The input activity data for each emission source sub-category has been selected from that available in different datasets by duly factoring in its relative time-series consistency and temporal and spatial applicability;
- The input data in the calculation sheets has been checked internally for transcription errors on a sample basis for all the 3 key source categories;
- The calculation spreadsheets have been checked for correct application of formulae, activity and factors and to ensure that calculations are correct. Manual calculations have been carried out for a part of the emission estimates in all 3 key source categories to verify the spreadsheets results;
- Appropriate recording, conversions, processing and consistency of measurement units for parameters and emission has been checked across the reporting period;
- The emission estimates of each year of the reporting period have been compared on a year on year basis and with the published GoI inventory to check for consistency in trends and detect any major deviations which cannot be correlated with corresponding changes in activity data and/or emission factors;
- The emission calculation equations, relevant data and parameter values used, intermediate formulae and cells wherein these are linked, and emission results are clearly depicted in the calculation spreadsheets for all 3 key source categories;
- The reporting document has been checked to confirm all relevant references and secondary sources for activity data and emission factors have been included and documented;
- Emission source categories and sub-categories included and excluded in the emission estimates have been transparently reported. Any known gaps in the emission estimates along with rationale of assumptions used to address data gaps have been clearly indicated in the reporting document;

Table 1.10: Details of key source categories excluded from present GHG estimates						
Sector	IPCC ID	Category description	Reason for exclusion			
	3B4	Wetlands	Lack of availability of activity data			
AFOLU	3C1c	Emissions from Biomass Burning in Grassland	Lack of availability of activity data			
	3C1d	Emissions from Biomass Burning in Other Land	Negligible incidences of biomass burning in other land			
	3C2	Liming	Lack of availability of activity data			
	3C3	Urea Fertilization	Lack of availability of activity data			
	3C6	Indirect N ₂ O emissions from Manure Management	Lack of availability of activity data			

1.10 General assessment of completeness

Emissions from the source categories mentioned above are not included in the estimates due to the lack of reliable data for these sources such as in the case of wetlands or biomass burning in other lands, or due to there being very negligible incidence of such activities in the country, such as liming.

Due to lack of availability of activity data and emission factors specific to IPCC 2006 methodology guidance, emissions from biomass burning in forestland and cropland are limited to the methodology available in NATCOM II⁶ in this assessment.

1.11 Recommended Improvements

The major recommendations that emanate from this exercise are as follows:

- While it is difficult for the platform to address the gap on its own, there is a need to engage with more relevant authorities to begin doing the apt surveys to collect the required data regarding the AFOLU subsectors.
- More specific emission factors, disaggregated at the state level if possible, need to be developed to make more precise calculations for AFOLU sector as a whole.

2. Trends in GHG emissions

2.1 Trend in aggregated GHG emissions

The above graph shows that the total emissions from AFOLU sector followed a linear trend from 254.85 MtCO₂e in 2005 to 243.12 MtCO₂e in 2015. A slight rise in the overall emissions was registered in 2012 and 2013 which can be attributed to slight decrease in absorption of GHGs from India's forests due to reduction in net carbon stock from 2011 to 2013.

Table 2.1: AFOLU Sector trend of GHG Emission estimates by source categories								
	En	nissions in	million tC	D₂e	%change			
Key source Category	2005	2007	2010	2015	2005-	2005-	2005-	
	2005	2007	2010	2015	2007	2010	2015	

⁶http://www.environmentportal.in/files/NATCOM.pdf

Livestock	219.79	230.28	226.29	228.75	4.78%	2.96%	4.08%
Land	-90.20	-90.20	-92.07	-117.18	0.00%	2.03%	29.92%
Aggregate Sources and							
non-CO ₂ emission	125.26	127.34	132.06	131.56	1.66%	5.43%	5.03%
sources on land							

Emissions from the livestock sub-sector i.e. enteric fermentation and manure management contribute a major share in the AFOLU sector. The emissions from this sector saw an insignificant rise in 2007 after which they were found to decrease due to decline in the livestock population from 2007 onwards. However, emissions from the livestock sub-sector grew at a nominal CAGR of 0.43% from 219.05 MtCO²e in 2005 to 228.73 MtCO₂e in 2015 and were mostly flat.

As seen in the graph above, CO_2 removals from the Land sub-sector followed a linear trend from 2005 to 2011 and saw a dip in 2012 and 2013. This deterioration in emission removals from -90.71 MtCO₂e in 2011 to -65.09 MtCO₂e in 2012 can be attributed to decrease in carbon stock in forest lands. However, a significant rise in the overall CO_2 removals was observed from 2014 (-117.18 MtCO₂e) onwards.

Emissions from the category (3C) Aggregate sources and non-carbon dioxide emission sources on land were found to increase marginally over the years with a CAGR of 0.41% from 124.77 MtCO₂e in 2005 to 129.99 MtCO₂e in 2015. Rice cultivation had the major share of ~51% in the total emissions of this subsector followed by emissions from the Agricultural Soils (~40%).

2.2 Trend in GHG emissions by type of GHG

The Trend of GHG emissions by the type of GHG is given below. CH_4 remained the maximum contributor to the emissions of the AFOLU sector across all the years. Significant emissions are also registered from N_2O gas. Notably, CO_2 gas was a net remover of GHG emissions throughout the reference period.

The overall share of each greenhouse gas (GHG) in the total AFOLU emissions is illustrated below.

Distribution of emissions from different key source categories is given in the table 2.2 below.

Table 2.2: AFOLU Sector distribution of emission contribution by sector for 2015							
IPCC ID	Key source category	%CO2	%CH4	%N₂O			
3A	Livestock		74.74%	1.26%			
3B	Land	100% (Removals)	-	-			
3C	Aggregate Sources and non-CO ₂ emission sources on land		25.26%	98.74%			

2.3 Key drivers of the emission trends in AFOLU sector

The key drivers of emissions from the AFOLU sector are livestock population, forests, rice cultivation and fertilizer use. Since these drivers are either stagnant or declining, the overall emissions of the AFOLU sector have remained stagnant. The emission estimates from each of the key category sources is elaborated below.

Emissions from the livestock category i.e. enteric fermentation and manure management contribute a major share in the AFOLU sector. The emissions from this sector saw an insignificant rise in 2007 after which they were found to decrease due to decline in the livestock population from 2007 onwards. However, emissions from the livestock category grew at a nominal CAGR of 0.40% from 219.79 $MtCO^2e$ in 2005 to 228.75 $MtCO_2e$ in 2015 and were mostly flat (Figure 5).

As seen in the figure 6 above, CO_2 removals from the Land sub-sector followed a linear trend from 2005 to 2011 and saw a dip in 2012 and 2013. This deterioration in emission removals from 90.71 MtCO₂e to - 65.09 MtCO₂e from 2011 to 2012 can be attributed to decrease in carbon stock in forest lands. However, a significant rise in the overall CO₂removals was observed from 2014 (-117.18 MtCO₂e) onwards.

Emissions from the category (3C) Aggregate sources and non-carbon dioxide emission sources on land were found to increase marginally over the years with a CAGR of 0.41% from 124.77 MtCO₂e in 2005 to 129.99 MtCO₂e in 2015 (Figure 7). Rice cultivation had the major share of ~54% in the total emissions of this category followed by emissions from the Agricultural Soils (~38%).

From the above discussion it can be concluded that the most important contribution of GHG emissions in the AFOLU sector are from CH₄ emissions of livestock and rice cultivation.

3. AFOLU

3.1 Overview of the sector

Emission estimates for the AFOLU sector have been provided as under for the base year (2005) and the reporting year (2015):

Table	Table 3.1: GHG estimates for base year and current year											
IPC	Source	GWP – S	AR		GWP – A	R5						
C ID	Category	2005 2015 % change		% change	2005 2015		% change					
3A	Livestock	219.79	228.75	4.08%	292.80	304.66	4.05%					
3B	Land	-90.20	-117.18	29.92 % (Removals)	-90.20	-117.18	29.91% (Removals)					
3C	Aggregate Sources and non- CO ₂ emission sources on land	125.26	131.56	5.03%	129.94	135.01	3.89%					

Between 2005 and 2015, there has been a decrease of approximately 0.48% compounded annually in the CO_2 equivalent emissions from this sector for India. This is primarily due to increase of carbon dioxide removals from the atmosphere by the forests.

3.2 Analysis of sectoral emissions

Category wise analysis of sectoral emissions is as follows:

Table 3.2: Category wise Analysis of GHG Emissions Estimates (2005-2015) in million tCO ₂ e												
IPCC	Category	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
ID	description											
3A	Livestock	219.79	225.03	230.28	228.95	227.62	226.29	224.96	223.63	224.60	226.30	228.75
3B	Land	-90.20	-90.20	-90.20	-92.07	-92.07	-92.07	-90.71	-65.09	-65.09	-	-
											117.18	117.18
3C	Aggregate Sources and non- CO2 emissions sources on land	125.26	127.02	127.34	130.42	128.81	132.06	135.81	133.20	132.49	131.72	131.56

GHG emissions from the AFOLU sector mainly arises from three sub-sectors namely, Livestock, Land and Aggregate sources and non- CO_2 emissions sources on land. Notably, the Land sub-sector was a net remover of GHGs while the other two sub-sectors were net emitter. In 2015, if the emissions were considered excluding the removals from the Forest Land sub-sector, Livestock had the major contribution of 59.98% while Aggregate sources and non- CO_2 emissions sources on land contributed to 34.49% of the total AFOLU emissions followed by very minor contribution of 5.53% by the Land sector. Notably, Forest land sequestered 36.26% of the GHG emissions from the atmosphere.

The per capita GHG emissions of the AFOLU sector in the country were found to be decreasing at a compounded rate of 2.06% from 0.19 tCO₂e in 2005 to 0.20 tCO₂e in 2015. This decline in the per capita emissions can be attributed to the increase in removals from Indian forests and also an increase in the population of India coupled with an overall stagnation of the positive emissions from this sector.

The emissions intensity (emissions per unit of GDP PPP) of India from AFOLU sector witnessed a downward trend at a compounded rate of 6.77% due to a slight fall in emissions from this sector and a significant rise in India's GDP contributions from sectors other than AFOLU (using GDP values from Ministry of Statistics Planning and Implementation⁷)

3.3 State-wise analysis of emissions

Table 3.3: State-wise GHG estimates 2005 - 2015(in MtCO ₂ e)											
Name of the State	200	200	200	200	200	201	201	201	201	201	201
Name of the State	5	6	7	8	9	0	1	2	3	4	5
Andaman and	-	-	-	-	-	-	-	-	-	0.26	0.26
Nicobar Island	7.11	7.11	7.10	7.11	7.11	7.11	7.13	1.17	1.17	0.50	0.50
										-	-
Andhra Pradesh	5.35	5.84	6.13	6.42	5.47	6.55	6.23	2 2 5	0.62	18.9	19.7
								8.25	9.03	6	2
	-	-	-	-	-	-	-				
Arunachal Pradesh	20.6	20.6	20.6	20.9	20.9	20.9	20.7	5.47	5.49	6.42	6.28
	4	6	6	5	4	2	5				

States with maximum emissions from the AFOLU sector in year 2005 and 2015 are as follows.

⁷ For 2004-05 to 2011-12: <u>http://pibphoto.nic.in/documents/rlink/2018/nov/p2018112801.pdf</u> Fore 2011-12 to 2015-16:

http://www.mospi.nic.in/sites/default/files/press_release/FRE%20of%20National%20Income%2C%20Consumptio n%20Expenditure%2C%20Saving%20and%20Capital%20Formation%20For%202017-18_0.pdf

Assam	8.95	8.84	9.24	9.62	9.80	10.0 3	10.0 8	13.9 2	13.8 4	5.81	5.91
Dihan	24.2	25.2	25.9	25.8	25.2	24.7	25.8	26.0	25.8	25.1	26.2
Binar	6	3	2	0	4	4	6	2	3	8	9
Chandigarh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	- 0.06	- 0.06	0.02	0.02
Chhattisgarh	9.92	10.0 6	10.1 9	10.1 1	10.1 4	10.2 0	9.96	15.8 0	15.8 2	15.0 0	14.9 1
Dadra and Nagar Haveli	0.12	0.13	0.13	0.13	0.12	0.12	0.12	0.14	0.14	0.03	0.03
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	- 0.01	- 0.08	- 0.08	0.00	0.00
Delhi	0.23	0.25	0.26	0.24	0.23	0.21	0.19	0.13	0.12	0.18	0.18
Goa	- 1.01	- 1.01	- 1.02	- 1.02	- 1.03	- 1.03	- 1.03	0.27	0.26	- 0.18	- 0.18
Guiarat	19.0	19.4	19.8	20.5	20.9	21.9	22.5	20.2	21.0	22.0	22.4
	5	5	8	1	2	1	0	3	5	4	0
Haryana	10.5	10.5	10.6	10.8	10.9	11.0	11.2	11.1	11.0	11.0	11.3
	6	9	4	0	2	5	5	4	9	8	6
Himachal Pradesh	- 0.60	- 0.60	- 0.59	- 0.65	- 0.69	- 0.72	- 0.59	2.20	2.18	- 5.70	- 5.70
Jammu and Kashmir	- 0.19	- 0.10	- 0.02	- 0.33	- 0.47	- 0.62	- 0.61	- 5.41	- 5.54	- 1.39	- 1.47
Jharkhand	6.55	6.93	7.20	7.09	6.68	6.26	6.54	9.48	9.43	9.68	10.5 7
Karnataka	11.9 4	12.3 3	12.7 2	12.7 8	12.8 1	12.8 5	12.8 7	7.49	7.23	- 10.9 0	- 11.2 8
Kerala	- 1.34	- 1.42	- 1.52	- 1.57	- 1.63	- 1.70	- 1.84	- 30.8 4	- 30.8 5	- 23.7 4	- 23.7 9
Lakshadweep	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Madhya Pradesh	27.0	27.8	28.6	27.7	27.4	26.9	27.3	27.7	27.7	26.0	26.0
Waanya Pradesh	3	3	1	4	0	7	0	3	4	8	5
Maharashtra	34.4	34.5	34.7	34.5	34.6	35.0	34.3	22.8	23.0	24.4	24.0
	0	2	7	8	3	3	6	2	5	7	2
Manipur	- 0.61	- 0.63	- 0.66	- 0.65	- 0.66	- 0.63	- 0.61	- 0.47	- 0.42	- 2.95	- 3.00
Meghalaya	- 2.29	- 2.28	- 2.25	- 2.28	- 2.28	- 2.27	- 2.25	1.33	1.34	2.85	2.86
Mizoram	- 0.76	- 0.76	- 0.76	- 0.80	- 0.81	- 0.83	- 0.85	3.47	3.47	5.32	5.34
Nagaland	0.23	0.25	0.24	0.24	0.20	0.18	0.17	2.71	2.70	9.02	8.99
Odisha	11.5 5	11.2 7	10.8 0	10.1 8	9.95	10.2 2	9.73	16.8 3	17.0 3	4.17	3.88
Puducherry	0.15	0.14	0.14	0.12	0.12	0.12	0.10	0.01	0.01	0.15	0.15

Duniah	11.8	11.6	11.5	11.7	11.9	12.1	12.2	12.9	12.9	11.8	12.2
Fulljab	1	4	1	1	0	3	9	5	2	4	8
Pajasthan	25.0	25.4	25.9	25.1	25.4	26.2	28.2	26.9	27.3	23.5	24.4
пајазинан	2	7	2	3	8	0	1	3	9	4	3
Sikkim	-	-	-	-	-	-	-	0.24	0 25	0 47	0.50
	4.01	4.02	4.02	3.94	3.95	3.95	3.89	0.54	0.35	0.47	0.50
	18 5	19.0	19 3	19 1	18.4	18.0	17 5	-	-	11 5	11 7
Tamil Nadu	3	5	5	13.1 4	9	10.0	-17.5	24.7	25.0	0	8
	5	5	5		,	-	,	0	9	0	0
Telangana	16.2	16.7	17.1	17.1	16.4	16.9	16.5	46.1	46.8	1 87	3 88
Telangana	5	5	1	5	1	4	7	4	8	4.07	5.00
Tripura	-	-	-	-	-	-	-	0.89	0 80	2 72	2 77
	1.58	1.57	1.53	1.62	1.64	1.62	1.62	0.85	0.85	5.75	5.77
Littar Pradoch	46.0	45.9	45.9	48.1	48.9	50.1	51.3	55.6	56.6	54.7	55.9
	5	6	7	5	6	1	5	3	5	4	9
Uttarakhand	2.78	2.92	3.09	2.97	2.90	2.84	2.85	8.32	8.30	2.71	2.77
West Pengal	1 24	6 FF	7 72	7 50	6 70	E 02	E 1/	24.3	23.6	23.3	23.2
west beingdi	4.24	0.55	1.73	7.59	0.78	5.02	5.14	1	6	9	4
India	254.	261.	267.	267.	264.	266.	270.	291.	292.	240.	243.
IIIuia	85	86	42	30	36	28	06	74	00	84	12

As seen above, maximum GHG emissions arise from the state of Uttar Pradesh. This is because Uttar Pradesh has a high density of livestock population contributing to maximum livestock emissions from the country. Also, the removals of emissions from Uttar Pradesh's forest are only around 4.34 MtCO₂e, which is low compared to the other states.

3.4 Sectoral Quality Control (QC) and Quality Assurance (QA)

A summary of the key source category-wise description of the quality assessment and quality control processes undertaken is given below.

Table 3.4: Summary of Quality Assessment and Quality Control Processes										
IPCC Category Activity Data Sour		Type of	Emission Factor	Data Processing	Bifurcation of data for Andhra Pradesh and					
		Source		Strategy	Telangana from Unified Andhra Pradesh					
					before 2012					
3A1Enteric	Livestock Census of	Official,	NATCOM-II:	Data has been	District -wise proportion of the Livestock					
Fermentation	India for 2007 and	Publicly	Indigenous cattle,	interpolated and	population was taken and apportioned to					
	2012	Available	Cross bred Cattle and	extrapolated for	the total population of livestock before					
3A2 Manure			Buffalo	the years where	bifurcation to attain the new values.					
Management			IPCC 2006: Rest of the	the data was						
			Categories	unavailable						
3B1 Forest Land	Forest Survey of	Official,	2005-2009: FSI,	Data has been	Actual District-wise forest area has been					
	India	Publicly	Carbon Report ⁸	interpolated and	taken for the calculations.					
		Available	2010-2015: FSI, State	extrapolated for						
			of Forest	the years where						
			Report,2017 ⁹	the data was						
3B2 Cropland	National Remote	Official,	Biomass: Forest	unavailable	The Proportion of the new Andhra Pradesh					
3B3 Grassland	Sensing Centre	Available on	Survey of India, State		and Telangana area were assigned to gain					
3B4 Wetlands	(available on	Request	of Forest report		the land use change.					
3B5 Settlements	request)		SOC: Sreenivas et.al							
3B6 Other Lands			SOC (Cropland):							
			Expert Literature ¹⁰							
3C1a Biomass	Forest Survey of	Official,	NATCOM-II	No Data	Proportion of the forest area burnt in					
Burning in Forest	India	Publicly		Extrapolation/	Andhra Pradesh and Telangana was					
Land		Available		Interpolation	available in Reddy et.al.					

 ⁸ <u>http://fsi.nic.in/carbon_stock/chapter-4.pdf</u>
 ⁹ <u>http://fsi.nic.in/isfr2017/isfr-carbon-stock-in-india-forest-2017.pdf</u>
 ¹⁰ The values have been taken from various literatures the links to which can be found in the bibliography.

3C1b Biomass	2005-2008: Planning	Official,	NATCOM-II	No Data	The average of the proportions of Andhra
Burning in	Commission	Publicly	(Andreae and Merlet	Extrapolation/	Pradesh and Telangana for the latest years
Cropland	2009 to 2015:	Available	2001)	Interpolation	i.e. 2013-14 and 2014-15 was apportioned
	Statistical year Book				to the previous year values (2005 to 2012)
					of Andhra Pradesh
3C4 Direct N ₂ O	Indian Fertilizer	Official,	NATCOM-II	No Data	The average of the proportions of Andhra
emissions from	Scenario,	Publicly	Bhatia e. al. 2004	Extrapolation or	Pradesh and Telangana for the latest years
Managed Soils	Department of	Available		Interpolation	i.e. 2013-14 and 2014-15 was apportioned
	Fertilizers, Ministry				to the previous year values (2005 to 2012)
	of Chemicals and				of Andhra Pradesh
	Fertilizers				
3C5 Indirect N ₂ O	Government of India		NATCOM-II		
emissions from			(Bhatia et al 2013)		
Managed Soils	Statistical Year Book,				
	Ministry of Statistics				
	and Programme				
	Implementation				
3C7 Rice	Directorate of	Official,	NATCOM-II	No Data	The average of the proportions of Andhra
Cultivation	Economics and	Publicly	(Gupta et al., 2009	Extrapolation or	Pradesh and Telangana for the latest years
	Statistics	Available	and Pathak et	Interpolation	i.e. 2013-14 and 2014-15 was apportioned
	Department of		al.,2010)		to the previous year values (2005 to 2012) of
	Agriculture,				Andhra Pradesh
	Cooperation and				
	Farmer's Welfare,				
	Government of India				

Given below is a detailed explanation of the quality assessment and quality control processes undertaken:

- All the parameters, units and conversion factors have been labelled properly. If any assumptions have been made for calculations, it has been cross-verified with the associated external expert and explanation for the same has been provided.
- The activity data and emission factors used has been properly archived within the calculation sheets. Extrapolation and interpolation for years for which data is not available has been done through assuming a linear trend.
- Data entry was done in-house, and validation of data was done through sample checks physically as well as through validation techniques such as through plotting and using trend charts.
- Sources of the data and emission factors has been cited across this document and the calculation sheets.
- The emission factors and other conversion factors applied for emission estimates are consistent across the categories and also across the years. If there is a different emission factor used for any source category, a valid justification regarding the same has been provided in this document.
- In terms of completeness, the exercise has covered all the categories and sub-categories from AFOLU sector responsible for emissions in India unless they are not relevant to the country or there is no data available for making any estimations what so ever.
- The draft estimates are peer reviewed by WRI India. WRI India reviewed the data points (including but not limited to AD, EF, etc.) on sample basis and ensured consistency of methodology with internationally acceptable standards and guidelines like IPCC, etc.

3.5 3A Livestock

3A1. Enteric Fermentation

3.5.1 Category description

Enteric Fermentation resulting in emissions of CH_4 arises out of the process of ingesting and digesting of food eaten by herbivores, primarily bovines and ovine. However, other animals such as camels, horses and mules etc. also emit small amounts of CH_4 .

The activity data has been sourced from the Livestock Census of India and the type and quality of data is given below. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.5A: Source category wise details on type of data, quality and source									
IPCC ID	GHG Source & Sink Categories	Туре	Quality	Source					
3.	AFOLU								
3A	Livestock								
3A1	Enteric Fermentation								
3A1a	Cattle	Secondary	High	18 th Livestock Census					
3A1ai	Dairy cows (Indigenous and Cross Bred)	Secondary	High	19 th Livestock Census					
3A1aii	Other cattle or Non-dairy cows	Secondary	High						
	(Indigenous and Cross Bred)								

3A1b	Buffalo (dairy and non-dairy)	Secondary	High	http://dahd.nic.in/docu
3A1c	Sheep	Secondary	High	ments/statistics/livestoc
3A1d	Goats	Secondary	High	<u>k-census</u>
3A1e	Camels	Secondary	High	
3A1f	Horses and ponies	Secondary	High	
3A1g	Donkeys	Secondary	High	
3A1h	Pigs	Secondary	High	

3.5.2 Methodology

Methane emissions from Enteric Fermentation have been calculated using methodology prescribed in 2006 IPCC guidelines for national GHG inventories. To ensure consistency with India's National Communication Reports and the Biennial Update Report 2010, the emission inventory for all sub-sectors has been prepared on a calendar year basis. Activity datasets for emission estimations available on financial year basis have been converted to calendar year datasets for a given calendar year by considering 3/4th of the value from the previous financial year (corresponding to 9 months from April to December out of 12 months in a year) and 1/4th from the next financial year (corresponding to 3 months from January to March out of 12 months in a year)¹¹.

 CO_2 emissions from livestock are not estimated because annual net CO_2 emissions are assumed to be zero – the CO_2 photosynthesized by plants is returned to the atmosphere as respired CO_2 . (Chapter 10, Volume 4, IPCC 2006). Similarly, as no nitrogen is released during the process of digestion in livestock, no nitrous oxide (N₂O) emissions are reported. The methodological details for estimation of GHG emissions for enteric fermentation are as follows:

Table 3.5B: Source category wise details on tier approach and type of emission factor used										
IPCC	GHG source & sink	CO2		CH ₄		N ₂ O				
ID	categories	Method	Emission	Method	Emission	Method	Emission			
		Applied	Factor	Applied	Factor	Applied	Factor			
3A1	Enteric Fermentation	Not Appli	icable			Not Appli	cable			
3A1a	Cattle			T2	CS					
3A1ai	Dairy cows (Indigenous and Cross Bred)			T2	CS					
3A1aii	Other cattle or Non-dairy cows (Indigenous and Cross Bred)	-		T2	CS					
3A1b	Buffalo (dairy and non- dairy)	-		T2	CS					
3A1c	Sheep			T2	CS					
3A1d	Goats			T2	CS					
3A1e	Camels			T1	D					
3A1f	Horses and ponies			T1	D					
3A1g	Donkeys			T1	D					
3A1h	Pigs			T1	D					

Note: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

¹¹ This has been applied to the data sets of all key source categories unless otherwise mentioned.

The activity data i.e. the livestock population is sourced from the Livestock Census of India published every five years by the Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture and Farmers Welfare. The Livestock census have been used for the years 2002, 2007 and 2012. Emission factors for bovines¹², sheep and goats have been sourced from the NATCOM II and for the remaining other animals IPCC Default emission factors have been used.

Therefore, a Tier II methodology has been used for major methane emitting categories (i.e. bovines, sheep and goats) and Tier I methodology has been used where country specific emission factors were not available.

The following steps were performed for emission estimation from enteric fermentation:

Step 1. Livestock Population Estimation

As a first step, the average annual population of animals was taken from the Census of Livestock. Categorization was done as per available categories in the emission factors viz. dairy and non-dairy for cattle (indigenous cows, crossbred cows and buffaloes). In this analysis, mules and asses are not added in the total livestock population as their population is miniscule and the relative emissions are negligible. The details regarding categorisation are given in the table 3.5C below:

Table 3.5C: Categorization of livestock for	r derivation of methane emission factors
Category	Sub category
a) Mature dairy cows (Mature cows that	"Cross-bred" dairy cows
have calved at least once and used	"Indigenous cows" (non-descript or desi) dairy cows.
principally for milk production)	"Buffaloes"
b) Non-dairy cattle	Young cattle (cross bred cows, indigenous cows and
	buffaloes):
	• Below 1 year ¹³
	 1-3 years¹⁴
	Others (cross bred cows, indigenous cows and buffaloes):
	 Male (Breeding, Working and Others)
	 Female (Non-dairy adults)
c) Goats	Mature (1 year and above)
	Young (less than 1 year)
d) Sheep	Mature (1 year and above)
	Young (less than 1 year)
e) Camels	No classification
f) Horses and ponies	No classification
g) Pigs	No classification

¹² Bovines refers to Cattles and Buffaloes (both Dairy and Non-Dairy)

¹³ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group below 1 year. However, census data category provides data for under 1 year. Therefore, the emission factor for population below one year has been applied to the category titled under one year. ¹⁴ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group 1 to 3 years. However, census data category provides data for 1 to 2.5 years. Therefore, the emission factor for population between 1 to 3-year has been applied to the category titled 1 to 2.5 years.

Livestock populations for the intermediate years between the livestock census years were calculated from the annual increment of population between the two census years (For e.g. 2002 and 2007). Given below is an example of the formula used:

$$AIR = \frac{Population in Y2 - Population in Y1}{n}$$

Population in Y3 = Population in Y2 + AIR

Where,

AIR = Annual Increment Ratio Population in Y = Population in Year 1, 2, 3... etc n = Number of Years Livestock population from the succeeding year i.e. 2013 has been derived from the CAGR computed between 2007 and 2012 for the various categories of livestock populations. Formula used for calculating the future population:

$$CAGR = \left(\frac{FV}{BV}\right)^{1/n} - 1$$

Where, CAGR = Compounded Annual Growth Rate FV = Future Value BV = Beginning Value n = Number of Years

Step 2: Emission Factor Estimation

Methane emission factors for the livestock categories have been sourced from NATCOM II and IPCC 2006. Table 3.5D below provides emission factors for each sub-group:

Table 3.5D: Emission factor of each sub-group in terms of kilograms of methane per animal per year										
Category	Sub-category	Age group	Methane emission factor	Source						
			(kgCH ₄ /head/year)							
Indigenous	Dairy cattle	Indigenous	28.00	NATCOM II, 2012						
Cattle	Non-dairy	0-1 year	9.00	NATCOM II, 2012						
	cattle	1-3 year	23.00	NATCOM II, 2012						
	(indigenous)	Adult	32.00	NATCOM II, 2012						
Cross-bred	Dairy cattle	Cross-bred	43.00	NATCOM II, 2012						
cattle	Non-dairy	0-1 year	11.00	NATCOM II, 2012						
	cattle (cross-	1-3 year	26.00	NATCOM II, 2012						
	bred)	Adult	33.00	NATCOM II, 2012						
Buffalo	Dairy buffalo		50.00	NATCOM II, 2012						
	Non-dairy	0-1 year	8.00	NATCOM II, 2012						
	buffalo	1-3 year	22.00	NATCOM II, 2012						
		Adult	44.00	NATCOM II, 2012						
Sheep			5.00	IPCC 2006						
Goat			5.00	IPCC 2006						

Horses & Ponies	18.00	IPCC 2006
Donkeys	10.00	IPCC 2006
Camels	46.00	IPCC 2006
Pigs	1.00	IPCC 2006
Poultry	0.00	IPCC 2006

Step 3: Emission Estimation

Emissions from process of enteric fermentation are calculated by multiplying the selected emissions factors with the associated animal population (IPCC equation 10.19, Refer Annex 1 for sample calculation) and summed using IPCC equation 10.20 (Refer Annex 1 for sample calculation) given below:

$$Emissions = EF_{(T)} \cdot \left(\frac{N_{(T)}}{10^6}\right)$$

Where,

Emissions	= methane emissions from Enteric Fermentation, Gg CH ₄ yr ⁻¹
$EF_{(T)}$	= emission factor for the defined livestock population, kg CH ₄ head ⁻¹ yr ⁻¹
$N_{(T)}$	= the number of head of livestock species/category T in the country
Т	= species/category of livestock
	 = emission factor for the defined livestock population, kg CH4 head ² yr ⁴ = the number of head of livestock species/category T in the country = species/category of livestock

$$Total \ CH_{4_{Enteric}} = \sum_{i} E_{i}$$

Where,

Total $CH_{4_{Enteric}}$ = total methane emissions from Enteric Fermentation, Gg CH₄ yr⁻¹ E_i = Emissions for the ith livestock categories and subcategories

3.5.3 Recalculation

There is no change in the activity data and emission factors for the period 2005 to 2013, when compared with phase 2. All activity data pertaining to Enteric Fermentation are complete and high quality in nature. Therefore, the scope for recalculation in national level estimates is nil, compared to the previous phase.

3.5.4 Uncertainties

The uncertainties regarding calculations of emissions under this category depends on factors including body weight of the animals as well as their feed intake. Further, emission factor estimation due to feed intake of livestock varies from region to region from enteric fermentation.

Table	Table 3.5E: Source category wise description of Qualitative uncertainty				
IPCC	Source	Qualitative Uncertainty			
ID	Category	Activity Data	Emission Factor		
3A1	Enteric Fermentation	Lack of availability of yearly livestock population data	There are significant variations in body weight and size of livestock across India, along with variations of feed intake that are not fully captured.		

3.5.5 Recommended Improvements

As and when data that captures the diversity of livestock, for both body weight and feed intake, in India becomes available, it will be utilised for more precise emission estimations from this source.

3.6 3A2. Manure Management

3.6.1 Category description

Manure management emissions arise from the process of animal's manure decomposition. In general, emissions vary depending on the type of decomposition – aerobic or anaerobic. If manure is decomposed naturally i.e. aerobically, little or no emissions are produced. However, if manure is treated anaerobically, higher emissions are observed.

Manure management results in CH_4 and N_2O emissions. CO_2 emissions from livestock are not estimated because annual net CO_2 emissions are assumed to be zero – the CO_2 photosynthesized by plants is returned to the atmosphere as respired CO_2 (Chapter 10, Volume 4, IPCC 2006).

Methane emissions from manure management tend to be smaller than enteric emissions, with the most substantial emissions associated with confined animal management operations where manure is handled in liquid-based systems. Nitrous oxide emissions from manure management vary significantly between the types of management system used and can also result in indirect emissions due to other forms of nitrogen loss from the system (Chapter 10, Volume 4, IPCC 2006).

The activity data has been sourced from the <u>Livestock Census of India</u> and the type and quality of data is given below. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.6A: Source category wise details on type of data, quality and source				
IPCC ID	GHG Source & Sink Categories	Туре	Quality	Source
3.	AFOLU			
3A	Livestock			
3A2	Manure Management			
3A2a	Cattle	Secondary	High	18 th Livestock Census
3A2ai	Dairy cows (Indigenous and Cross Bred)	Secondary	High	19 th Livestock Census
3A2aii	Other cattle or Non-dairy cows	Secondary	High	http://dahd.nic.in/doc
	(Indigenous and Cross Bred)			uments/statistics/livest
3A2b	Buffalo (dairy and non-dairy)	Secondary	High	<u>ock-census</u>
3A2c	Sheep	Secondary	High	
3A2d	Goats	Secondary	High	
3A2e	Camels	Secondary	High	
3A2f	Horses and ponies	Secondary	High	
3A2g	Donkeys	Secondary	High	
3A2h	Pigs	Secondary	High	

3.6.2 Methodology

Methane emissions from manure management have been calculated using the methodology provided in 2006 IPCC guidelines for national GHG inventories. The methodological details (Tier approach) for estimation of GHG emissions for manure management are as follows:

Table 3.6B: Source category wise details on tier approach and type of emission factor used							
IPCC	GHG source & sink	CO2		CH ₄		N ₂ O	
ID	categories	Method	Emission	Method	Emission	Method	Emission
		Applied	Factor	Applied	Factor	Applied	Factor
3A2a	Manure Management	Not Appli	cable				
3A2ai	Cattle			T2	CS	T1	D
3A2aii	Dairy cows (Indigenous and Cross Bred)			Т2	CS	T1	D
3A2b	Other cattle or Non-dairy cows (Indigenous and Cross Bred)			Т2	CS	T1	D
3A2c	Buffalo (dairy and non- dairy)	-		Т2	CS	T1	D
3A2d	Sheep	-		T2	CS	T1	D
3A2e	Goats	-		T2	CS	T1	D
3A2f	Camels	-		T1	D	T1	D
3A2g	Horses and ponies			T1	D	T1	D
3A2h	Donkeys			T1	D	T1	D
3A2a	Pigs			T1	D	T1	D

Note: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

The activity data i.e. the livestock population is sourced from the 18th and 19th Livestock Census of India, published every five years by the Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture and Farmers Welfare. The Livestock census has been used for the years 2002, 2007 and 2012. Methane emission factors for bovines¹⁵, sheep and goats have been sourced from the NATCOM II and for the other remaining animals IPCC default emission factors have been used. IPCC default emission factors¹⁶ have been used for estimating N₂O emissions for all the categories.

Therefore, for CH_4 emissions, a Tier II methodology has been used for major methane emitting categories (i.e. bovines, sheep and goats) and Tier I methodology has been used where country specific emission factors were not available. For N₂O emissions, a Tier I methodology has been adopted.

The following steps were performed for **CH**₄ emission estimation from manure management:

Step 1. Livestock Population Estimation

¹⁵ Bovines refers to Cattles and Buffaloes (both Dairy and Non-Dairy)

¹⁶ Most expert literatures available in the public domain state that they are using IPCC, 2006 N2O for emissions factors but they still use the IPCC 1996 N2O emissions factors for calculations. The same has been done in the present study.

As a first step, the average annual population of animals was taken from the Census of Livestock. Categorization was done as per available categories in the census viz. dairy and non-dairy for cattle (indigenous cows, crossbred cows and buffaloes). In this analysis, mules and asses are not added in the total livestock population as there are no emissions from the same. The details regarding categorisation are given in the table 3.6C below:

Table 3.6C: Categorization of livestock for derivation of methane emission factors			
Category	Sub category		
a) Mature dairy cows	"Cross-bred" dairy cows		
(Mature cows that have calved at	"Indigenous cows" (non-descript or desi) dairy cows.		
least once and used principally	"Buffaloes"		
for milk production)			
b) Non-dairy cattle	Young cattle (cross bred cows, indigenous cows and buffaloes):		
	• Below 1 year ¹⁷		
	• 1-3 years ¹⁸		
	Others (cross bred cows, indigenous cows and buffaloes):		
	 Male (Breeding, Working and Others) 		
	 Female (Non-dairy adults) 		
c) Goats	Mature (1 year and above)		
	Young (less than 1 year)		
d) Sheep	Mature (1 year and above)		
	Young (less than 1 year)		
e) Camels	No classification		
f) Horses and ponies	No classification		
g) Pigs	No classification		

Livestock populations for the intermediate years between the livestock census years were calculated from the annual increment of population between the two census years (For e.g. 2002 and 2007). Given below is an example of the formula used:

$$AIR = \frac{Population in Y2 - Population in Y1}{n}$$

Population in Y3 = Population in Y2 + AIR

where,

AIR = Annual Increment Ratio Population in Y = Population in Year 1, 2, 3... etc n = Number of Years

¹⁷ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group below 1 year. However, census data category provides data for under 1 year. Therefore, the emission factor for population below one year has been applied to the category titled under one year. ¹⁸ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group 1 to 3 years. However, census data category provides data for 1 to 2.5 years. Therefore, the emission factor for population between 1 to 3-year has been applied to the category titled 1 to 2.5 years.

Livestock population from the succeeding year i.e. 2013 has been derived from the CAGR computed between 2007 and 2012 for the various categories of livestock populations. Formula used for calculating the future population:

$$CAGR = \left(\frac{FV}{BV}\right)^{1/n} - 1$$

Where, CAGR = Compounded Annual Growth Rate FV = Future Value BV = Beginning Value n = Number of Years

Step 2: Emission Factor Estimation

Methane emission factors for the livestock categories have been sourced from NATCOM II and IPCC 2006. The table 3.6D mentioned below provides emission factors for each sub-group:

Table 3.6D: Emission factor of each sub-group in terms of kilograms of methane per animal per year				
Category	Sub-category	Age group	Methane emission factor	Source
			(kgCH ₄ /head/year)	
Indigenous Cattle	Dairy cattle	Indigenous	3.50	NATCOM II, 2012
	Non-dairy cattle	0-2 year	1.20	NATCOM II, 2012
	(indigenous)	1-3 year	2.80	NATCOM II, 2012
		Adult	2.90	NATCOM II, 2012
Cross-bred cattle	Dairy cattle	Cross-bred	3.80	NATCOM II, 2012
	Non-dairy cattle	0-1 year	1.10	NATCOM II, 2012
	(cross-bred)	1-3 year	2.30	NATCOM II, 2012
		Adult	2.50	NATCOM II, 2012
Buffalo	Dairy buffalo		4.40	NATCOM II, 2012
	Non-dairy	0-1 year	1.80	NATCOM II, 2012
	buffalo	1-3 year	3.40	NATCOM II, 2012
		Adult	4.00	NATCOM II, 2012
Sheep			0.20	IPCC 2006
Goat			0.22	IPCC 2006
Horses & Ponies			2.19	IPCC 2006
Donkeys			0.90	IPCC 2006
Camels			2.56	IPCC 2006
Pigs			4.00	IPCC 2006
Poultry			0.00	IPCC 2006

Step 3: Emission Estimation

Emissions from the process of manure management are calculated by multiplying the selected emissions factors with the associated animal population (IPCC equation 10.22, Refer Annex 1 for Sample Calculation) as given below:

$$CH_{4_{Manure}} = \sum_{(T)} \frac{(EF_{(T)} \cdot N_{(T)})}{10^6}$$

Where,

CH4 _{Manure}	= methane emissions from Manure Management, Gg CH ₄ yr ⁻¹
$EF_{(T)}$	= emission factor for the defined livestock population, kg CH ₄ head ⁻¹ yr ⁻¹
$N_{(T)}$	= the number of head of livestock species/category T in the country
Т	= species/category of livestock

Step 4: Emissions from all livestock categories are added to get total methane emissions from manure management.

The following steps were performed for <u>N₂O emission estimation</u> from manure management:

Step 1. Livestock Population Estimation

As a first step, the average annual population of animals was taken from the Census of Livestock. Categorization was done as per available categories in the census viz. dairy and non-dairy for cattle (indigenous cows, crossbred cows and buffaloes). In this analysis, mules and asses are not added in the total livestock population as there are no emissions from the same. The details regarding categorisation are given in the table 3.6E below:

Table 3.6E: Categorization of livestock for derivation of methane emission factors		
Category	Sub category	
a) Mature dairy cows	 "Cross-bred" dairy cows 	
(Mature cows that have calved at	 "Indigenous cows" (non-descript or desi) dairy cows. 	
least once and used principally for	 "Buffaloes" 	
milk production)		
b) Non-dairy cattle	 Young cattle (cross bred cows, indigenous cows and 	
	buffaloes):	
	a) Below 1 year ¹⁹	
	b) 1-3 years ²⁰	
	 Others (cross bred cows, indigenous cows and buffaloes): 	
	a) Male (Breeding, Working and Others)	
	b) Female (Non-dairy adults)	
c) Goats	 Mature (1 year and above) 	
	 Young (less than 1 year) 	
d) Sheep	 Mature (1 year and above) 	
	 Young (less than 1 year) 	

¹⁹ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group below 1 year. However, census data category provides data for under 1 year. Therefore, the emission factor for population below one year has been applied to the category titled under one year. ²⁰ Based on NATCOM II, emission factors are available for cattle population categories of crossbred, buffalo, and indigenous cattle for age group 1 to 3 years. However, census data category provides data for 1 to 2.5 years. Therefore, the emission factor for population between 1 to 3-year has been applied to the category titled 1 to 2.5 years.
e) Camels	No classification
f) Horses and ponies	No classification
g) Pigs	No classification

Livestock populations for the intermediate years between the livestock census years was calculated from the annual increment of population between the two census years (For e.g. 2002 and 2007). Given below is an example of the formula used:

$$AIR = \frac{Population in Y2 - Population in Y1}{n}$$

Population in Y3 = Population in Y2 + AIR

where, AIR = Annual Increment Ratio Population in Y = Population in Year 1, 2, 3... etc n = Number of Years

Livestock population from the succeeding year i.e. 2013 has been derived from the CAGR computed between 2007 and 2012 for the various categories of livestock populations. Formula used for calculating the future population:

$$CAGR = \left(\frac{FV}{BV}\right)^{1/n} - 1$$

Where,

CAGR = Compounded Annual Growth Rate FV = Future Value BV = Beginning Value n = Number of Years

Step 2: Emission Factor Estimation

For calculating nitrogen excretion, IPCC values²¹ were used for estimating nitrogen excretion, per animal. The values adopted were:

Dairy cattle	- 60 kg N/ animal/ year
Non-dairy cattle	- 40 kg N/ animal/ year
Pigs	- 16 kg N/ animal/ year
Poultry	- 0.6 kg N/ animal/ year

The following nitrogen emission factors were used as per 2006 IPCC Guidelines:

Table 3.6F: Nitrogen Emission Factors				
Category of Livestock Nitrogen emissions per animal (kgN ₂ O/head/y				
Dairy cattle	0.0006			
Non-dairy cattle	0.0004			
Pigs	0.0074			
Poultry	0.0025			

²¹ IPCC 2006 Guidelines, Chapter 10, Table 10.19, summarized from IPCC 1996 Guidelines, Chapter 4, Table B1, <u>http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch4ref8.pdf</u>

Step 3 & 4: Emission Estimation

Total emissions were determined by multiplying the number of animals in each category with emission factor. Nitrogen emissions from manure management are calculated using the below mentioned equation in step 5. However, under this exercise, emission factor was obtained from India's second national communications to the UNFCCC.

N₂O emissions were calculated in the following manner:

IPCC equation 10.25²² (Refer Annex I for sample calculations) that was used was the following:

$$N_2 O_{animals} = N_2 O_{AWMS} = \sum \left[N_T \cdot N_{ex(T)} \cdot AWMS_T \cdot EF_{3(AWMS)} \right] \cdot \frac{44}{28}$$

where,	
$N_2 O_{animals}$	= N_2O emissions from animal production in a country (kg N/yr)
$N_2 O_{AWMS}$	= N_2O emissions from Animal Waste Management System in the country (kg N/yr);
N_T	= number of animals of type T in the country
$N_{ex(T)}$	= N excretion of animals of type T in the country (kg N/animal/yr)
$AWMS_T$	= fraction of $N_{ex(T)}$ that is managed in one of the different distinguished animal waste
	management systems for animals of type T in the country
$EF_{3(AWMS)}$	= N_2O emission factor for an AWMS (kg N_2O -N/ kg of N_{ex} in AWMS)
Т	= type of animal category
44/28	= conversion of (N ₂ O-N) emissions to N ₂ O emissions

Step 5: Emissions from all categories are aggregated and total emission expressed as Gg N_2O / year.

Emissions (Gg/ Year) = EF (kg/ head/ year) x population/ 10^6 kg/ Gg.

3.6.3 Recalculation

No recalculation was performed for estimating emissions from this category because the activity data, emissions factor and methodology was the same as used for Phase II estimates. There was no new data source used, no error was observed and no new methodology was used.

3.6.4 Uncertainties

Uncertainty in emission estimation from manure management arises due to activity data and emission factors. Activity data on manure yields and their end uses is not fully known in Indian context, and therefore, a quantitative measure of uncertainty cannot be made. Similarly, country specific emission factors are available only for bovines. There is uncertainty associated with the same as there is limited research available on country specific emission factors.

²² <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf</u> - page 10.53

Table 3.6G: Source category wise description of Qualitative uncertainty					
IPCC	CC Source Qualitative Uncertainty				
ID	Category	Activity Data Emission Factor			
3A2	Manure	Lack of availability of yearly	Precise data on manure yields and their end		
	Management	livestock population data	uses is not fully known under Indian conditions.		

3.6.5 Recommended Improvements

As and when data that captures the manure yields in the Indian subcontinent become available, as well as more precise information on manure management systems is also made available, these estimates can become more precise.

3.7 3B Land

3B1 Forestland

3.7.1 Category description

This section provides details of emission estimates from Forestland due to changes in biomass, dead organic matter and soil organic matter on Forest Land and Land converted to Forest Land.

For this study, Land Use Matrix for forestland remaining forestland and land converted to forestland has been derived from the biennially updated 'State of Forest Report (SFR)' from Forest Survey of India.

For the State of Forest Report, FSI maps forest cover through satellite data with a Linear Imaging and Self Scanning Sensor (LISS) III sensor. In India, all lands that occupy an area more than one hectare and have a canopy density of more than 10% irrespective of the ownership and legal status are called Forest Cover. FSI does not make any distinction whether the forest is natural or man-made, government or private, recorded or not recorded.

For stratification of the activity data, FSI uses two variables namely forest types and canopy density. It also includes bamboo, orchards, palms etc. Given below are details of activity data used in the subcategory. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.7A: An overview of source categories of Forest Land							
IPCC ID	PCC ID GHG source & sink categories Type Quality Source						
3B	Land						
3B1	Forest Land ²³	Secondary Data	High	State of Forest Reports:			
				2017			
				<u>2015</u>			

²³ The estimates given in this report only refer to the overall areas under forests and the carbon stock contained within them. Data at the national level is not available for forest land remaining forest land and land other than forest land converted to forest land

		2013
		<u>2011</u>
		2009
		2005

3.7.2 Methodology

For GHG estimation from forestland in India, the Stock-Difference Method is applied along with country specific estimates of activity data and emission factors, in-line with section 4.2.1.1 – choice of method, Volume 4, Chapter 4, 2006 IPCC Guidelines. As per IPCC equation 2.5, Volume 4, Chapter 2, 2006 IPCC Guidelines²⁴, it can be used where carbon stocks in relevant pools are measured at two points in time to assess carbon stock changes, as represented in equation given below (Refer Annex I for sample calculations):

$$\Delta C = \frac{(C_{t_2} - C_{t_1})}{(t_2 - t_1)}$$

where,

 ΔC is Annual Carbon stock change in pool (tonnes C yr-1) C_{t_2} is Carbon stock in the pool at time t2 C_{t_1} is Carbon stock in the pool at time t1

The following steps were performed for emission estimation from Forestland:

Step 1. Estimation of Area

Area under Forest Land Remaining Forestland and Land converted to Forestland is estimated. Table 3.7B below provides details of the tier approach and types of emission factors used for forest land:

Table 3.7B: An overview of emission factors used for forestland				
IPCCID	GHG Source & sink categories	Method Applied	Emission Factor	
3B1 Forest Land T2 CS				

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

The area is sourced from the State of Forest Reports (SFR) for India published biannually by Forest Survey of India (FSI). The reports used in this study are SFR 2009, SFR 2011, SFR 2013, SFR 2015 and SFR 2017. The FSI provides Forestland remaining Forestland and Land converted to Forestland in these reports. For the years that FSI does not publish the data, the area is interpolated using a linear trend.

Step 2: Emission Factor Estimation

Emission factor estimation, i.e. the change in the carbon stock and biomass in case of forestland is registered from the Forest Survey of India's Report on Carbon Stock in India. FSI's Carbon Stock Report, 2011²⁵ gives the carbon stock density under five different pools for the forests in year 2009 for all states and UTs. The five pools mentioned in this report are Above Ground Biomass, Below Ground Biomass,

²⁴ <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_02_Ch2_Generic.pdf</u>

²⁵ See table 4.4 available at <u>http://fsi.nic.in/carbon_stock/chapter-4.pdf</u>

Deadwood, Litter and Soil Organic Carbon. The carbon stock density under these pools is updated and is provided in the <u>SFR 2017</u> for all Indian states and UTs.

Carbon stock for each year in consideration is estimated by multiplying the carbon stock density under different pools with the area under forestland for that year. From 2005 to 2010, the carbon stock density from the Carbon Stock Report is considered and is multiplied with the Forest area till 2010. From 2011 onwards, the carbon stock density is used from the SFR 2017 report.

Step 3: Emission Estimation

In cases where forestland remains as forestland, carbon removal from the atmosphere due to biomass growth and loss due to disturbance and biomass removals (both fuel wood and timber) are considered. The annual carbon stock changes for each land category is calculated as a sum of changes in all carbon pools of above-ground biomass, below-ground biomass, deadwood, litter, soils and harvested wood products.

IPCC's Stock Exchange Methodology has been used with Equation 2.5 (Refer the methodology section on Page 42, Section 3.6.2 for equation).

A bottom up approach has been used for estimating emissions from forestland. Since, SFR reports carbon stock change in fiscal year, the platform reports emission estimates in fiscal year (assumed to be same as calendar year for LULUCF sector).

Table 3.7C: Source category wise details on the difference between GHG estimates				
Year	Key source category	GHG Emissio	on Estimates (MtCO ₂ e)	% Difference
		Phase-II	Phase-III	
2005	Forest Land	-145.62	-97.97	-33%
2006	Forest Land	-145.62	-97.97	-33%
2007	Forest Land	-145.62	-97.97	-33%
2008	Forest Land	-145.62	-97.97	-33%
2009	Forest Land	-145.62	-97.97	-33%
2010	Forest Land	-145.62	-97.97	-33%
2011	Forest Land	-188.83	-97.97	-48%
2012	Forest Land	-188.83	-72.35	-62%
2013	Forest Land	-188.83	-72.35	-62%

3.7.3 Recalculation

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold.

As seen in table 3.7C above, some deviation in Phase -3 and Phase-2 emissions were observed in Forest land category. This deviation can be attributed to the usage of updated carbon stock values used from SFR 2017 as compared to the carbon stock values published in carbon stock report 2011. Under this method, we have assumed three time periods i.e. 2004-11, 2011-13, 2013-15 for which FSI has provided the actual carbon stock in India. Also, in this phase, the India value has been derived by totaling up the state emissions unlike phase-2, where the national data was used to derive the India emission values.

3.7.4 Uncertainty

The activity data for the area under forests at the state level is from Forest Survey of India reports. The state level data has been aggregated to arrive at the national total for forestry. The forest cover assessment is based on satellite imagery. Internationally, the accuracy of classification of remote sensing data more than 85% is considered to be satisfactory. FSI prepared an error matrix for assessing the accuracy of classification based on remote sensing data by comparing agreement and disagreement between remote sensing derived classification with the reference data (ground truth) on a class by class basis at randomly selected locations. FSI has assessed the accuracy to be greater than 90% for all the years of survey considered for the inventory (FSI, 2011, 2013 and 2015).

The emission factors for forest land i.e. the carbon stock estimation for above ground biomass, below ground biomass, SOC, dead wood and litter is from the FSI report. FSI have reported an accuracy for carbon stock estimation as 88% and the standard error percentage of the estimation of growing stock at national level arising from National Forest Inventory at about 2%. The standard error percentage of estimates of carbon content of dead wood, woody litter, shrubs, climbers, herbs and grasses at national level arising from special biomass study is about 30% due to regional variation. But the contribution of these pools is very low to the total forest carbon pool (FSI 2011) and hence not considered significant.

Table 3.7D: Source category wise description of Qualitative uncertainty						
IPCC	Source	Qualitative Uncertainty	Qualitative Uncertainty			
ID	Category	Activity Data	Activity Data Emission Factor			
3B1	Forestland	Lack of availability of year-on- year data on Forestland	Lack of data on underlying assumptions for carbon stock calculations such as stand age,			
			species composition, etc.			

3.7.5 Recommended Improvements

For the estimation of GHG emissions/removals from land, we will be looking at generating change matrices for selected states to validate the change matrices that we have been able to obtain from official sources. In addition, we will continue to scan relevant literature for improvements in tools and methodologies, as well as more precise data in the future.

3.8 3B2 Cropland

3.8.1 Category description

This section provides details of estimating emissions from Cropland. Cropland includes arable and tillable land, rice fields and agroforestry systems where the vegetation structure falls below thresholds used for Forest Land (Volume 4, Chapter 5, 2006 IPCC guidelines for national GHG inventories).

Given below is an overview of the source categories. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.8A: An overview of source categories of Cropland						
IPCC ID	GHG source & sink categories Type Quality Source					
3B	Land					
3B2	Cropland	Secondary Data	High	National Remote		
3B2a	Cropland Remaining Cropland	Secondary Data	High	Sensing Centre		
3B2bi	Forestland converted to Cropland	Secondary Data	High	(available on request)		
3B2bv	Other Land converted to Cropland	Secondary Data	High			

3.8.2 Methodology

Amount of carbon stored in and emitted or removed from permanent cropland depends on crop type, management practices and soil & climate variable. Annual crops (cereals, vegetable) are harvested each year, so there is no long-term storage of carbon in biomass and hence, not accounted. GHGs from Cropland are estimated from perennial woody vegetation in orchards, vineyards and agroforestry systems and soil. Carbon stored in biomass, depends on species type and cultivar, density, growth rates, harvesting and pruning practices (Volume 4, Chapter 5, 2006 IPCC guidelines for national GHG inventories).

Steps followed

Emission estimation for Cropland is done by categorizing land in two categories viz., Cropland Remaining Cropland and Land Converted to Cropland. This study uses 2006 IPCC Guidelines to estimate emissions from these categories. The steps followed in the estimation process for both the categories remain same with the only difference arising in choice/estimation of emission factors:

Step 1:

In this study, GHG emissions from change in perennial woody vegetation and soils is estimated using the *Stock Difference Method* from the following categories:

- (a) Cropland remaining cropland
- (b) Cropland Plantations Remaining Cropland Plantations
- (c) Forestland converted to Cropland
- (d) Grassland converted to Cropland (No Land use change observed by NRSC)
- (e) Settlements converted to Cropland (No Land use change observed by NRSC)
- (f) Other lands converted to Cropland
- (g) Forest Land converted to Agriculture Plantations (No Land use change observed by NRSC)
- (h) Cropland converted to Agriculture Plantations (*No Land use change observed by NRSC*)
- (i) Settlements converted to Agriculture Plantations (No Land use change observed by NRSC)
- (j) Other Land converted to Agricultural Plantations

IPCC category (3B2biii) Wetlands converted to Cropland is not considered in this assessment primarily due to lack of data.

For this category, Land Use Change Matrix has been derived from National Remote Sensing Centre (NRSC), Hyderabad. NRSC is a national organization hosted under Indian Space Research Organization (ISRO). Given below are details of the methodology approach used for emission estimation from cropland:

Table 3.8B: An overview of emission factors used for cropland				
		CO ₂		
IPCCID	GHG source & sink categories	Method Applied	Emission Factor	
3B2	Cropland	T2	CS	
3B2a	Cropland Remaining Cropland	T2	CS	
3B2bi	Forestland converted to Cropland	T2	CS	
3B2bii	Grassland converted to Cropland	T2	CS	
3B2biv	Settlements converted to Cropland	T2	CS	
3B2bv	Other Land converted to Cropland	T2	CS	

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

Step 2:

For activity data, Land Use Change Matrix as prepared by NRSC is used for Croplands. The change matrix provided by NRSC gives changes in the land use pattern for the years (a) 2006-08, (b) 2008-11 and (c) 2011-13. Since, the data is not available for the years 2005, 2013, 2014 and 2015, land use pattern for 2005 has been assumed same as for the year 2006. Similarly, land use pattern for 2013, 2014 & 2015 has been assumed to be same as for 2012. This is because these changes in land use tend to be almost the same when looked at year-on-year basis.

Step 3:

Emission factor estimation has been done specifically for this study. <u>FSI</u> creates a detailed assessment of trees outside the forests (TOF), which includes tree cover comprising of small patches of trees (<0.1 ha) in plantations and woodlots, scattered trees and farms, homesteads and urban areas as well as trees along linear features such as roads, canals and cropland bunds. FSI also provides the growing stock of the trees outside the forest land, which includes all land categories other than forest and includes cropland.

The approach adopted for estimating carbon stock changes in cropland is as follows:

Step 4:

<u>Change in Biomass Carbon stock in Croplands</u>: Carbon stock change in cropland remaining cropland is estimated by taking the tree biomass carbon stock at two periods in time (2004 and 2013). Biomass of trees outside forests is available for the years 2004, 2007, 2009, 2011 and 2013. The rate of change in biomass stocks are measured in terms of carbon estimated (Refer Table 3.8C below). The growing biomass stock of trees outside forests is declining at a rate of 0.014 tC/ha/yr among the successive measurements for the period 2004 to 2013. This rate has been used for estimating carbon stock change in cropland, grassland and settlements since the TOF remains the same in all the categories.

Category	2004 ^a	2013 ^b
Growing Stock in TOF (million cum)	1616.25	1573.34
Total stock in above ground biomass ²⁶ (Mt)	1035.11	1007.63

Table 3.8C: Biomass carbon stock in Croplands

²⁶ Above Ground Biomass = Growing Stock x density (0.7116) x Biomass Expansion Factor ** (**Source: <u>http://www.envfor.nic.in/mef/Technical Paper.pdf</u>)

Biomass Expansion Factor is 0.9 for India – Source: Page 75, BUR II

https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf

Total stock in below ground biomass ²⁷ (Mt)	279.48	272.06
Total biomass (Mt)	1314.59	1279.69
Total biomass Carbon ²⁸ (MtC)	657.29	639.84
Rate of Change of Biomass Carbon (MtC/yr)	-1.94	
Rate of Change of Biomass Carbon (tC/ha/yr)	-0.008	

Source: a – Table 6.1, Page 40, <u>SFR 2005</u> & b – Table 5.2, Page 81, <u>SFR 2015</u>

Step 5:

<u>Change in Soil Organic Carbon content in Croplands</u>: Land is typically converted to Cropland from native lands, managed Forest Land and Grassland, but occasionally conversions can occur from Wetlands and seldom Settlements. Regardless of soil type (i.e., mineral or organic), the conversion of land to Cropland will, in most cases, result in a loss of soil C for some years following conversion (*5.3.3, Chapter 5, Volume 4, 2006 IPCC Guidelines for national GHG inventories*).

For Cropland Remaining Cropland, the rate of change of SOC has been derived from multiple studies that have been listed in the bibliography accompanying this document.

SOC reference values for Forestland has been used from M Kaul et al 2009 and SOC values for Cropland and Other Land has been derived from K. Sreenivas et al 2016.

Further, the total change in soil C stocks for Land Converted to Cropland is estimated using Equation 2.25, chapter 2, Vol. 04 of {IPCC 2006 Guidelines} (Refer Annex I for sample calculations) given below:

$$\Delta C_{mineral} = \frac{\left(SOC_0 - SOC_{(0-T)}\right)}{D}$$
$$SOC = \sum_{C,S,I} SOC_{REF_{C,S,I}} \cdot F_{LU_{C,S,I}} \cdot F_{MG_{C,S,I}} \cdot F_{I_{C,S,I}} \cdot A_{C,S,I}$$

where,

$\Delta C_{mineral}$	= annual change in carbon stocks in mineral soils, tonnes C yr ⁻¹
<i>S</i> 0 <i>C</i> ₀	= soil organic carbon stock in the last year of an inventory time, tonnes C
$SOC_{(0-T)}$	= soil organic carbon stock at the beginning of the inventory time, tonnes C

 SOC_0 and $SOC_{(0-T)}$ are calculated using the SOC equation in the box where the reference carbon stocks and stock change factors are assigned according to the land-use and management activities and corresponding areas at each of the points in time (time = 0 and time = 0-T)

D	= Time Dependence, 20 years
С	= represents the climate zones, S the soil types, and I the set of management systems that
	are present in a country.
SOC_{REF}	= the reference carbon stock, tonnes C ha ⁻¹
F_{LU}	= stock change factor for land-use systems or sub-system for a particular land-use, dimensionless

²⁷ Please See Table 1, Page 9 of

https://www.academia.edu/26244255/Indias Forest and Tree Cover Contribution as a Carbon Sink Technical Paper – Root Shoot Ratio is 0.27

²⁸ Carbon Fraction is 0.49 (Default Value sourced from IPCC 2006 Guidelines. Please see table 4.3 (Tropical, Woody – Carbon Fraction value from <u>https://www.ipcc-</u>

nggip.iges.or.jp/public/2006gl/pdf/4 Volume4/V4 04 Ch4 Forest Land.pdf)

-		c . c			
FMC	= stock change	tactor tor	management	regime	dimensionless
* V (,	Stock change	140001 101	management		annensionness

- F_I = stock change factor for input of organic matter, dimensionless
- A = land area of the stratum being estimated, ha. All land in the stratum should have common biophysical conditions (i.e., climate and soil type) and management history over the inventory time to be treated together for analytical purposes

Since, there is no land conversion from Grassland and Settlements to Cropland, no calculations have been performed for the same.

Step 6:

The total biomass and soil organic carbon content for each sub-category is calculated by multiplying the area within that sub-category with the respective change in biomass and soil organic carbon for that particular sub-category. The total change in carbon stocks is calculated by adding up all values of the sub-categories estimates.

Table 3	Table 3.8D: Source category wise details on the difference between GHG estimates			
Year	Key source category	GHG Emission Estimates (MtCO ₂ e) % Difference		% Difference
		Phase-II	Phase-III	
2005	Cropland	2.30	-1.46	-164%
2006	Cropland	2.30	-1.46	-164%
2007	Cropland	2.30	-1.46	-164%
2008	Cropland	3.14	-0.62	-120%
2009	Cropland	3.14	-0.62	-120%
2010	Cropland	3.14	-0.62	-120%
2011	Cropland	2.47	-1.32	-154%
2012	Cropland	2.47	-1.32	-154%
2013	Cropland	2.47	-1.32	-154%

3.8.3 Recalculation

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold. As seen in table 3.8D above, high deviation was observed in phase-3 and phase-2 emissions from cropland. This is mainly because the emission factors used to calculate the emissions are now sourced from BUR II.

3.8.4 Uncertainty

NRSC has conducted accuracy assessment of the remote sensing land use and land classification. Stratified random points generated through image software was used to assess the accuracy of classification. The number sample points for each stratum was selected based on the proportion of the area. However, a minimum of 20 sample points was considered for each class to estimate the accuracy of the classified output. Ground truth data, legacy maps, and multi-temporal FCC have formed the basis for assessment and generation of Kappa co-efficient. For quality check, it was submitted to the QAS team. Refinement of crop classification areas obtained based on classification map at the end of the year was used.

The classification outputs were subjected to post classification accuracy assessment. The error matrix of accuracy assessment for different states was done. The overall classification accuracy is found to be 88.82% with a range of 83.05% to 95.31% in different states (NRSC 2007).

For subsequent years, the planimetric accuracy was stated, wherein it is less than one pixel in plain areas and less than 2 pixels in hilly terrains (NRSC 2010), (NRSC 2012), (NRSC 2013)²⁹. During 2013-14 it was <1 pixel in plains.

The standing stock or biomass stock outside forest area is which includes cropland is taken from the State of Forest Report (FSI). There are no estimates of precision levels.

SOC reference values for Forestland from M Kaul et al 2009 has not estimated uncertainty. In fact, the research paper has reported uncertainties in input variables due to very large spatial heterogeneity that affect net Carbon flux from land use change.

The SOC of land use was from the study conducted by K. Sreenivas et al 2016 from National Remote Sensing Centre (NRSC) wherein the SOC was spatially mapping at 250 m resolution and an estimate of their pool size in India was undertaken using many remote sensing derived data layers and data mining approach. The SOC densities were estimated for 1198 soil samples located across India using a stratified random sampling that integrated land use, soil, topography and agroecological regions. Using Random forests (RF) based spatial prediction procedure with climatic, land cover, rock type, soil type, multi-year Normalized Difference Vegetation Index (NDVI), irrigation status as independent input variables, models for predicting carbon density at 250 m spatial resolution were developed. For modelling with RF algorithm, about 898 soil profile observations (75% observations) were used, while the rest of 300 (25% of total observations) were used for validation. The Root Mean Square Error (RMSE) statistic was used to measure the degree of agreement between the predicted and observed values. The relationship between observed and predicted values was characterized by Mean Squared Deviations (MSD) parameter which was 3.19.

Activity data in the public domain is available but cannot be verified independently due to lack of open access to remote sensing data that is used by governmental agencies.

Table 3	8.8E: Source cat	egory wise description of	Qualitative uncertainty
IPCC	Source	Qualitative Uncertainty	
ID	Category	Activity Data	Emission Factor
3B2	Cropland	Lack of access to finer resolution data to map land use changes	Lack of data on underlying assumptions for carbon stock calculations such as stand age, species composition, etc. Lack of availability of region- specific carbon stock data based on topography and climatic regions.

3.8.5 Recommended Improvements

For the estimation of GHG emissions/removals from land, we will be looking at generating change matrices for selected states to validate the change matrices that we have been able to obtain from official sources. In addition, we will continue to scan relevant literature for improvements in tools and methodologies, as well as more precise data in the future.

3.9 3B3 Grassland

3.9.1 Category description

This section provides details of estimating emissions from Grassland. Grasslands are generally distinguished from "forest" as ecosystems having a tree canopy cover of less than a certain threshold, which varies from region to region. Below-ground carbon dominates in grassland and is mainly contained in roots and soil organic matter (Volume 4, Chapter 6, 2006 IPCC guidelines for national GHG inventories).

In India, grasslands include many categories other than forest land and cropland.

Given below are details of activity data used in Grasslands. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.9	A: An overview of source categories of	Grassland		
IPCC ID	GHG source & sink categories	Туре	Quality	Source
3B	Land			
3B3	Grassland	Secondary Data	High	National Remote
3B3a	Grassland Remaining Grassland	Secondary Data	High	Sensing Centre
3b3bv	Other Land converted to Grassland	Secondary Data	High	(available on
				request)

3.9.2 Methodology

Inter-annual climatic variability is a crucial factor for consideration when estimating emissions from grasslands. Substantial changes in standing biomass can occur from year to year that is associated with differences in annual rainfall. Inter-annual rainfall variability may also affect management decisions such as irrigation or fertilizer application (Volume 4, Chapter 5, 2006 IPCC Guidelines for national GHG inventories) and thereby affecting emission estimates.

Emission estimation for Grassland is done by categorizing land in two categories viz., Grassland Remaining Grassland and Land Converted to Grassland. This study uses 2006 IPCC Guidelines for national GHG inventories to estimate emissions from these categories. The steps followed in the estimation process for both the categories remain same with the only difference arising in choice/estimation of emission factors:

Steps followed:

Step 1:

In this study, GHG emissions from grasslands are estimated using the *Stock Difference Method* from the following categories:

- (a) Grassland remaining Grassland
- (b) Forest Land converted to Grassland (No Land use change observed by NRSC)
- (c) Cropland converted to Grassland (No Land use change observed by NRSC)
- (d) Settlements converted to Grassland (No Land use change observed by NRSC)

(e) Other Land converted to Grassland

Table 3.9B: An overview of emission factors used for grasslands				
		CO ₂		
IPCCID	GHG Source & sink categories	Method Applied	Emission Factor	
3B3	Grassland	T2	CS	
3B3a	Grassland Remaining Grassland	T2	CS	
3b3bv	Other Land converted to Grassland	T2	CS	

Given below are details of the methodology used for grasslands:

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

For this category, Land Use Change Matrix for grassland has been derived from National Remote Sensing Centre (NRSC), Hyderabad. NRSC is a national organization hosted under Indian Space Research Organization (ISRO).

Step 2:

For activity data, Land Use Change Matrix as prepared by NRSC is used for Grasslands. The change matrix provided gives changes in the land use pattern for the years (a) 2006-08, (b) 2008-11 and (c) 2011-13. Since, the data is not available for the years 2005 and 2013, 2014 and 2015, land use pattern for 2005 has been assumed same as for the year 2006. Similarly, land use pattern for 2013, 2014 & 2015 has been assumed to be same as for 2012. This is because these changes in land use tend to be almost the same when looked at year on year.

Step 3:

Emission factor estimation has been done specifically for this study. <u>FSI</u> creates a detailed assessment of trees outside the forests (TOF), which includes tree cover comprising of small patches of trees (<0.1 ha) in plantations and woodlots, scattered trees and farms, homesteads and urban areas as well as trees along linear features such as roads, canals and cropland bunds. FSI also provides the growing stock of the trees outside the forest land, which includes all land categories other than forest and includes cropland.

Step 4:

The approach adopted for estimating carbon stock changes in grassland is as follows:

<u>Change in Biomass Carbon stock in Grassland</u>: Carbon stock change in grassland remaining grassland is estimated by taking the tree biomass carbon stock at two periods in time (2004 and 2013). Biomass of trees outside forests is available for the years 2004, 2007, 2009, 2011 and 2013. The rate of change in biomass stocks are measured in terms of carbon estimated (Refer Table 3.9C below). The growing biomass stock of trees outside forests is declining at a rate of 0.014 tC/ha/yr among the successive measurements for the period 2004 to 2013. This rate has been used for estimating carbon stock change in cropland, grassland and settlements since the TOF remains the same in all the categories.

Table 3.9C: Biomass Carbon Stock in Grassland		
Category	2004 ^a	2013 ^b
Growing Stock in TOF (million cum)	1616.25	1573.34

Total stock in above ground biomass ³⁰ (Mt)	1035.11	1007.63
Total stock in below ground biomass ³¹ (Mt)	279.48	272.06
Total biomass (Mt)	1314.59	1279.69
Total biomass Carbon ³² (MtC)	657.29 639.84	
Rate of Change of Biomass Carbon (MtC/yr)	-1.94	
Rate of Change of Biomass Carbon (tC/ha/yr)	-0.008	

Source: : a – Table 6.1, Page 40, <u>SFR 2005</u> & b – Table 5.2, Page 81, <u>SFR 2015</u>

Step 5:

The annual change in organic C stocks in mineral soils is estimated using the equation given below of the IPCC methodology (Equation 2.25, (Refer Annex I for sample calculations)):

$$\Delta C_{mineral} = \frac{\left(SOC_0 - SOC_{(0-T)}\right)}{D}$$
$$SOC = \sum_{C,S,I} SOC_{REF_{C,S,I}} \cdot F_{LU_{C,S,I}} \cdot F_{MG_{C,S,I}} \cdot F_{I_{C,S,I}} \cdot A_{C,S,I}$$

where,

$\Delta C_{mineral}$	= annual change in carbon stocks in mineral soils, tonnes C yr ⁻¹
<i>S</i> 0 <i>C</i> ₀	= soil organic carbon stock in the last year of an inventory time, tonnes C
$SOC_{(0-T)}$	= soil organic carbon stock at the beginning of the inventory time, tonnes C

 SOC_0 and $SOC_{(0-T)}$ are calculated using the SOC equation in the box where the reference carbon stocks and stock change factors are assigned according to the land-use and management activities and corresponding areas at each of the points in time (time = 0 and time = 0-T)

D	= Time Dependence, yr
С	= represents the climate zones, S the soil types, and I the set of management systems that
	are present in a country.
SOC_{REF}	= the reference carbon stock, tonnes C ha-1
F_{LU}	= stock change factor for land-use systems or sub-system for a land-use, dimensionless
F_{MG}	= stock change factor for management regime, dimensionless
F_I	= stock change factor for input of organic matter, dimensionless
A	= land area of the stratum being estimated, ha. All land in the stratum should have common biophysical conditions (i.e., climate and soil type) and management history over the inventory time to be treated together for analytical purposes

Due to lack of data during two points of time, the rate of change in SOC for grassland was determined from the country-specific reference soil organic C stocks from K. Sreenivas et al. 2016 and default stock

Biomass Expansion Factor is 0.9 for India – Source: Page 75, BUR II

https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf ³¹ Please See Table 1, Page 9 of

nggip.iges.or.jp/public/2006gl/pdf/4 Volume4/V4 04 Ch4 Forest Land.pdf

³⁰ Above Ground Biomass = Growing Stock x density (0.7116) x Biomass Expansion Factor** (**Source: <u>http://www.envfor.nic.in/mef/Technical_Paper.pdf</u>)

https://www.academia.edu/26244255/Indias Forest and Tree Cover Contribution as a Carbon Sink Technical Paper – Root Shoot Ratio is 0.27

³² Carbon Fraction is 0.49 (Default Value sourced from IPCC 2006 Guidelines. Please see table 4.3 (Tropical, Woody – Carbon Fraction value from <u>https://www.ipcc-</u>

change factors (F_{LU} , F_{MG} , F_{I}) as given by the <u>2006 IPCC guidelines</u> (Vol 04, Chapter 06, Table 6.2, Page 6.16). Annual rates of stock change were calculated as the difference in stocks (over time) divided by the time dependence (D) of the stock change factors (with a default value of 20 years). The reference SOC is as determined by FSI for native forests. Based on the Tier I approach, for F_{LU} , F_{MG} and F_{I} , a default value of 1, 0.97 and 1 was considered respectively for the rate of change which is for moderately degraded grasslands (<u>2006 IPCC guidelines</u> (Vol 04, Chapter 06, Table 6.2, Page 6.16)). The annual SOC change for lands converted to grassland was estimated as the difference on the SOC values from other lands to native vegetation.

Since, there is no land conversion from Forest Land, Cropland and Settlements to Grassland, no calculations have been performed for the same.

The total biomass and soil organic carbon content for each sub-category is calculated by multiplying the area within that sub-category with the respective change in biomass and soil organic carbon for that particular sub-category. The total change in carbon stocks is calculated by adding up all values of the sub-categories estimates.

Table 3.9D: Source category wise details on the difference between GHG estimates					
Year	Key source category	GHG Emission Es	GHG Emission Estimates (MtCO ₂ e) %		
		Phase-II	Phase-III		
2005	Grassland	0.63	0.58	-8%	
2006	Grassland	0.63	0.58	-8%	
2007	Grassland	0.63	0.58	-8%	
2008	Grassland	0.47	0.42	-11%	
2009	Grassland	0.47	0.42	-11%	
2010	Grassland	0.47	0.42	-11%	
2011	Grassland	0.71	0.66	-7%	
2012	Grassland	0.71	0.66	-7%	
2013	Grassland	0.71	0.66	-7%	

3.9.3 Recalculation

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold. As seen in table 3.9D above, slight deviation was observed in phase-3 and phase-2 emissions from grassland. This is mainly because the biomass factor has been updated using the BUR II report.

3.9.4 Uncertainty

NRSC has conducted accuracy assessment of the remote sensing land use and land classification. Stratified random points generated through image software was used to assess the accuracy of classification. The number sample points for each stratum was selected based on the proportion of the area. However, a minimum of 20 sample points was considered for each class to estimate the accuracy of the classified output. Ground truth data, legacy maps, and multi-temporal FCC have formed the basis for assessment and generation of Kappa co-efficient. For quality check, it was submitted to the QAS team. Refinement of crop classification areas obtained based on classification map at the end of the year was used.

The classification outputs were subjected to post classification accuracy assessment. The error matrix of accuracy assessment for different states was done. The overall classification accuracy is found to be 88.82% with a range of 83.05% to 95.31% in different states for 2006 to 2007.³³

For subsequent years, the planimetric accuracy was stated, wherein it is less than one pixel in plain areas and less than 2 pixels in hilly terrains³⁴. During 2013-14 it was <1 pixel in plains³⁵.

The standing stock or biomass stock outside forest area is which includes grassland is taken from the State of Forest Report (<u>SFR 2015</u>). There are no estimates of precision levels.

SOC reference values for Forestland from M Kaul et al 2009 has not estimated uncertainty. In fact, the research paper has reported uncertainties in input variables due to very large spatial heterogeneity that affect net Carbon flux from land use change.

The SOC of land use was from the study conducted by K. Sreenivas et al 2016 from NRSC, wherein the SOC was spatially mapping at 250 m resolution and an estimate of their pool size in India was undertaken using many remote sensing derived data layers and data mining approach. The SOC densities were estimated for 1198 soil samples located across India using a stratified random sampling that integrated land use, soil, topography and agroecological regions. Using Random forests (RF) based spatial prediction procedure with climatic, land cover, rock type, soil type, multi-year NDVI, irrigation status as independent input variables, models for predicting carbon density at 250 m spatial resolution were developed. For modelling with RF algorithm, about 898 soil profile observations (75% observations) were used, while the rest of 300 (25% of total observations) were used for validation. The Root Mean Square Error (RMSE) statistic was used to measure the degree of agreement between the predicted and observed values. The relationship between observed and predicted values was characterized by Mean Squared Deviations (MSD) parameter which was 3.19.

Activity data in the public domain is available but cannot be verified independently due to lack of open access to remote sensing data that is used by governmental agencies.

Table 3	Table 3.9E: Source category wise description of Qualitative uncertainty					
IPCC	Source	Qualitative Uncertainty				
ID	Category	Activity Data	Emission Factor			
3B3	Grassland	Lack of access to finer resolution data to map land use changes	Lack of data on underlying assumptions for carbon stock calculations such as stand age, species composition, etc. Lack of availability of region-specific carbon stock data based on topography and climatic regions.			

 ³³ http://bhuvan.nrsc.gov.in/gis/thematic/tools/document/LULC250/0607.pdf (refer section 3.5)
 ³⁴ http://bhuvan.nrsc.gov.in/gis/thematic/tools/document/LULC250/0809.pdf (refer section 2.2), http://bhuvan.nrsc.gov.in/gis/thematic/tools/document/LULC250/1112.pdf (refer section 2.21), http://bhuvan.nrsc.gov.in/gis/thematic/tools/document/LULC250/1314.pdf (refer section 3.1)

³⁵ http://bhuvan.nrsc.gov.in/gis/thematic/tools/document/LULC250/1314.pdf

3.9.5 Recommended Improvements

For the estimation of GHG emissions/removals from land, we will be looking at generating change matrices for selected states to validate the change matrices that we have been able to obtain from official sources. In addition, we will continue to scan relevant literature for improvements in tools and methodologies, as well as more precise data in the future.

3.10 3B5 Settlements

3.10.1 Category description

This section provides details of estimating carbon stock changes and greenhouse gas emissions and removals associated with changes in biomass, dead organic matter (DOM), and soil carbon on lands classified as settlements. Settlements are defined as including all developed land -- i.e., residential, transportation, commercial, and production (commercial, manufacturing) infrastructure of any size, unless it is already included under other land-use categories. The land-use category Settlements includes soils, herbaceous perennial vegetation such as turf grass and garden plants, trees in rural settlements, homestead gardens and urban areas (Volume 4, Chapter 8, 2006 IPCC Guidelines for national GHG inventories).

The area under settlement is estimated to be approximately 8-9 Mha, which is less than 2% of the total land use in India. The net emissions from this category are very low (almost negligible) and therefore, the share of emissions from settlements in LULUCF sector is also negligible.

Given below are details of activity data used in Settlements. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.10A: An overview of source categories of Settlements					
IPCC ID	O GHG source & sink categories Type Quality Source				
3B	Land				
3B5	Settlements	Secondary Data	High	National	Remote
3B5a	Settlements Remaining Settlements	Secondary Data	High	Sensing	Centre
3B5bii	Cropland converted to Settlements	Secondary Data	High	(available	on
3B5v	Other Land converted to Settlements	Secondary Data	High	request)	

3.10.2 Methodology

Soils and DOM in Settlements may be sources or sinks of CO₂, depending on previous land use, topsoil burial or removal during development, current management, particularly with respect to nutrient and water applications, and amount of vegetation cover spread among roads, buildings and associated infrastructure ({IPCC 2006 Guidelines}).

In this study, GHG emissions from settlements are estimated using the *Stock Difference Method*³⁶ from the category Land converted to Settlements. Mostly Croplands and Other Land got converted to settlements based on the land use change matrix. The steps followed in the estimation process for both the categories remain same with the only difference arising in choice/estimation of emission factors:

Steps followed:

Step 1:

Given below are details of sub-categories of land converted to Settlements:

Table 3.10B: An overview of emission factors used for settlements				
	CUC courses & sink estanovice	CO ₂		
IPCCID	and source & sink categories	Method Applied	Emission Factor	
3B5	Settlements			
3B5a	Settlements Remaining Settlements	T2	CS	
3B5bii	Cropland converted to Settlements	T2	CS	
3B5v	Other Land converted to Settlements	T2	CS	

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

Step 2:

For activity data, Land Use Change Matrix as prepared by NRSC is used for Settlements.

The change matrix provided gives changes in the land use pattern for the years (a) 2006-08, (b) 2008-11 and (c) 2011-13. Since, the data is not available for the years 2005 and 2013, 2014 and 2015, land use pattern for 2005 has been assumed same as for the year 2006. Similarly, land use pattern for 2013, 2014 & 2015 has been assumed to be same as for 2012. This is because these changes in land use tend to be almost the same when looked at year on year.

Step 3:

The biomass stock change is estimated using the method and data described for croplands and grassland. In case of settlements, the input biomass is same as output biomass. Hence, the net biomass stock change is zero. Hence, there is no emission from settlement remaining settlement.

Step 4:

The annual change in organic C stocks in mineral soils is estimated using the equation given below of the {IPCC 2006 Guidelines } (Equation 2.25, chapter 2, Vol. 04 (Refer Annex I for sample calculations)):

$$\Delta C_{mineral} = \frac{\left(S0C_0 - S0C_{(0-T)}\right)}{D}$$
$$SOC = \sum_{C,S,I} SOC_{REF_{C,S,I}} \cdot F_{LU_{C,S,I}} \cdot F_{MG_{C,S,I}} \cdot F_{I_{C,S,I}} \cdot A_{C,S,I}$$

where,

 $\begin{aligned} \Delta C_{mineral} &= \text{annual change in carbon stocks in mineral soils, tonnes C yr^{-1} \\ SOC_0 &= \text{soil organic carbon stock in the last year of an inventory time, tonnes C} \\ solc_{(0-T)} &= \text{soil organic carbon stock at the beginning of the inventory time, tonnes C} \end{aligned}$

³⁶ http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4 Volume4/V4 08 Ch8 Settlements.pdf

 SOC_0 and $SOC_{(0-T)}$ are calculated using the SOC equation in the box where the reference carbon stocks and stock change factors are assigned according to the land-use and management activities and corresponding areas at each of the points in time (time = 0 and time = 0-T)

D	= Time Dependence, yr
С	= represents the climate zones, S the soil types, and I the set of management systems that
	are present in a country.
SOC_{REF}	= the reference carbon stock, tonnes C ha-1
F_{LU}	= stock change factor for land-use systems or sub-system for a particular land-use,
	dimensionless
F_{MG}	= stock change factor for management regime, dimensionless
F_I	= stock change factor for input of organic matter, dimensionless
А	= land area of the stratum being estimated, ha. All land in the stratum should have
	common biophysical conditions (i.e., climate and soil type) and management history over
	the inventory time to be treated together for analytical purposes

Due to lack of data during two points of time, the rate of change in SOC for settlements was determined from the country-specific reference soil organic C stocks from K. Sreenivas et al. 2016 and default stock change factors (F_{LU} , F_{MG} , F_{I}) as given by the {IPCC 2006 Guidelines}. Annual rates of stock change were calculated as the difference in stocks (over time) divided by the time dependence (D) of the stock change factors (with a default value of 20 years). The reference SOC is as determined by FSI for native forests. Based on the Tier I approach, for F_{LU} , F_{MG} and F_{I} , a default value of 0.8, 1.22 and 1 was considered respectively for the land transition from settlements to cropland (Section 8.3.3.2, Chapter 8, Vol. 04 IPCC 2006 Guidelines).

Since, there is no land conversion from Forest Land and Grassland to Settlements, no calculations have been performed for the same.

Step 5:

The total biomass and soil organic carbon content for each sub-category is calculated by multiplying the area within that sub-category with the respective change in biomass and soil organic carbon for that particular sub-category. The total change in carbon stocks is calculated by adding up all values of the sub-category estimates.

3.10.3 Recalculation

No recalculation was performed for estimating emissions from this category because the activity data, emissions factor and methodology was the same as used for Phase II estimates. There was no new data source used, no error was observed and no new methodology was used.

3.10.4 Uncertainty

NRSC has conducted accuracy assessment of the remote sensing land use and land classification. Stratified random points generated through image software was used to assess the accuracy of classification. The number sample points for each stratum was selected based on the proportion of the area. However, a minimum of 20 sample points was considered for each class to estimate the accuracy of the classified output. Ground truth data, legacy maps, and multi-temporal FCC have formed the basis for assessment and generation of Kappa co-efficient. For quality check, it was submitted to the QAS team. Refinement of crop classification areas obtained based on classification map at the end of the year was used.

The classification outputs were subjected to post classification accuracy assessment. The error matrix of accuracy assessment for different states was done. The overall classification accuracy is found to be 88.82% with a range of 83.05% to 95.31% in different states (NRSC 2007).

For subsequent years, the planimetric accuracy was stated, wherein it is less than one pixel in plain areas and less than 2 pixels in hilly terrains (NRSC 2010) (NRSC 2012) (NRSC 2013)³⁷. During 2013-14 it was <1 pixel in plains.

The standing stock or biomass stock outside forest area is which includes cropland is taken from the State of Forest Report (FSI). There are no estimates of precision levels.

SOC reference values for Forestland from M Kaul et al 2009 has not estimated uncertainty. In fact, the research paper has reported uncertainties in input variables due to very large spatial heterogeneity that affect net Carbon flux from land use change.

The SOC of land use was from the study conducted by K. Sreenivas *et al* 2016 from NRSC, wherein the SOC was spatially mapping at 250 m resolution and an estimate of their pool size in India was undertaken using many remote sensing derived data layers and data mining approach. The SOC densities were estimated for 1198 soil samples located across India using a stratified random sampling that integrated land use, soil, topography and agroecological regions. Using Random forests (RF) based spatial prediction procedure with climatic, land cover, rock type, soil type, multi-year NDVI, irrigation status as independent input variables, models for predicting carbon density at 250 m spatial resolution were developed. For modelling with RF algorithm, about 898 soil profile observations (75% observations) were used, while the rest of 300 (25% of total observations) were used for validation. The Root Mean Square Error (RMSE) statistic was used to measure the degree of agreement between the predicted and observed values. The relationship between observed and predicted values was characterized by Mean Squared Deviations (MSD) parameter which was 3.19.

Table 3.10C: Source category wise description of Qualitative uncertainty					
IPCC	Source	Qualitative Uncertainty			
ID	Category	Activity Data	Emission Factor		
385	Settlements	Lack of access to finer resolution data to map land use changes	Lack of data on underlying assumptions for carbon stock calculations such as stand age, species composition, etc. Lack of availability of region- specific carbon stock data based on topography and climatic regions.		

Activity data in the public domain is available but cannot be verified independently due to lack of open access to remote sensing data that is used by governmental agencies.

3.10.5 Recommended Improvements

For the estimation of GHG emissions/removals from land, we will be looking at generating change matrices for selected states to_2 validate the change matrices that we have been able to obtain from official sources. In addition, we will continue to scan relevant literature for improvements in tools and methodologies, as well as more precise data in the future.

3.11 3B6 Other Land

3.11.1 Category description

For the sub-category 'other lands', it includes wasteland, snow covered area, rocky surfaces, water bodies, etc. For this category, Land Use Change Matrix for Other Land has been derived from National Remote Sensing Centre (NRSC), Hyderabad. NRSC is a national organization hosted under Indian Space Research Organization (ISRO). Given below are details of activity data used in the sub-category. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.11A: An overview of source categories of Other Land					
IPCC ID	D GHG source & sink categories Type		Quality	Source	
3B	Land				
3B6	Other Land	Secondary Data	High	National Remote	
3B6a	Other Land Remaining Other Land	Secondary Data	High	Sensing Centre	
3b6bii	Cropland converted to Other Land	Secondary Data	High	(available on	
3b6biii	Grassland converted to Other Land	Secondary Data	High	request)	
3b6biv	Settlements converted to Other Land	Secondary Data	High		

3.11.2 Methodology

In this study, GHG emissions from Other Lands is estimated using the *Stock Difference Method* from the category Other Land Remaining Other Land and Land converted to Other Land. Mostly Croplands, Grassland and Settlements got converted to Other Land based on the land use change matrix prepared by NRSC. The steps followed in the estimation process for both the categories remain same with the only difference arising in choice/estimation of emission factors:

Steps followed:

Step 1:

Given below are details of the subcategories of land use type converted to Settlements:

Table 3.11B: An overview of Emission Factors used for Other Land				
		CO ₂		
IPCC ID	GHG source & sink categories	Method Applied	Emission Factor	
3B5	Other land			
3B6a	Other Land Remaining Other Land	T2	CS	

3b6bii	Cropland converted to Other Land	T2	CS
3b6biii	Grassland converted to Other Land	T2	CS
3b6biv	Settlements converted to Other Land	T2	CS

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

Step 2:

For activity data, Land Use Change Matrix as prepared by NRSC is used for Other Land.

The change matrix provided gives changes in the land use pattern for the years (a) 2006-08, (b) 2008-11 and (c) 2011-13. Since, the data is not available for the years 2005 and 2013, 2014 and 2015, land use pattern for 2005 has been assumed same as for the year 2006. Similarly, land use pattern for 2013, 2014 & 2015 has been assumed to be same as for 2012. This is because these changes in land use tend to be almost the same when looked at year on year.

Step 3:

The biomass stock change is estimated using the method and data described for croplands and grassland.

Step 4:

The annual rate of change in SOC was obtained from K. Sreenivas et al. 2016 as the difference of SOC between for Croplands & Other Land, Grasslands & Other Land and Settlements & Other Land (divided by 20 years for the conversion rate based on IPCC methodology – refer equation 2.25 of Chapter 02, Volume 04 of 2006 IPCC Guidelines for national GHG inventories). Since, there is no land conversion from Forest Land to Other Land, no calculations have been performed for the same.

Step 5:

The total biomass and soil organic carbon content for each sub-category is calculated by multiplying the area within that sub-category with the respective change in biomass and soil organic carbon for that particular sub-category. The total change in carbon stocks is calculated by adding up all values of the sub-category estimates.

3.11.3 Recalculation

No deviation was observed in phase-3 and phase-2 emissions from Other Lands. This is mainly because the activity data and methodology used to calculate the emissions remained invariant.

3.11.4 Uncertainty

NRSC has conducted accuracy assessment of the remote sensing land use and land classification. Stratified random points generated through image software was used to assess the accuracy of classification. The number sample points for each stratum was selected based on the proportion of the area. However, a minimum of 20 sample points was considered for each class to estimate the accuracy of the classified output. Ground truth data, legacy maps, and multi-temporal FCC have formed the basis for assessment and generation of Kappa co-efficient. For quality check, it was submitted to the QAS team. Refinement of crop classification areas obtained based on classification map at the end of the year was used.

The classification outputs were subjected to post classification accuracy assessment. The error matrix of accuracy assessment for different states was done. The overall classification accuracy is found to be 88.82% with a range of 83.05% to 95.31% in different states (NRSC 2007)

For subsequent years, the planimetric accuracy was stated, wherein it is less than one pixel in plain areas and less than 2 pixels in hilly terrains (NRSC 2010) (NRSC 2012) (NRSC 2013). During 2013-14 it was <1 pixel in plains.

The standing stock or biomass stock outside forest area is which includes Other Land is taken from the State of Forest Report (FSI). There are no estimates of precision levels.

SOC reference values for Forestland from M Kaul et al 2009 has not estimated uncertainty. In fact, the research paper has reported uncertainties in input variables due to very large spatial heterogeneity that affect net Carbon flux from land use change.

The SOC of land use was from the study conducted by K. Sreenivas *et al* 2016 from NRSA, wherein the SOC was spatially mapping at 250 m resolution and an estimate of their pool size in India was undertaken using many remote sensing derived data layers and data mining approach. The SOC densities were estimated for 1198 soil samples located across India using a stratified random sampling that integrated land use, soil, topography and agroecological regions. Using Random forests (RF) based spatial prediction procedure with climatic, land cover, rock type, soil type, multi-year NDVI, irrigation status as independent input variables, models for predicting carbon density at 250 m spatial resolution were developed. For modelling with RF algorithm, about 898 soil profile observations (75% observations) were used, while the rest of 300 (25% of total observations) were used for validation. The Root Mean Square Error (RMSE) statistic was used to measure the degree of agreement between the predicted and observed values. The relationship between observed and predicted values was characterized by Mean Squared Deviations (MSD) parameter which was 3.19.

Activity data in the public domain is available but cannot be verified independently due to lack of open access to remote sensing data that is used by governmental agencies.

Table 3.11C: Source category wise description of Qualitative uncertainty				
IPCC	Source	Qualitative Uncertainty		
ID	Category	Activity Data	Emission Factor	
3B6	Other Land	Lack of access to finer resolution data to map land use changes	Lack of data on underlying assumptions for carbon stock calculations such as stand age, species composition, etc. Lack of availability of region-specific carbon stock data based on topography and climatic regions.	

3.11.5 Recommended Improvements

For the estimation of GHG emissions/removals from land, we will be looking at generating change matrices for selected states to validate the change matrices that we have been able to obtain from official sources. In addition, we will continue to scan relevant literature for improvements in tools and methodologies, as well as more precise data in the future.

3.12 3C Aggregate Sources and Non-CO₂ Emission Sources on Land

3C1a Biomass Burning in Forestland

3.12.1 Category description

This section provides details of estimating non-carbon dioxide emissions from biomass burning in forest land. Both uncontrolled (wildfires) and managed (prescribed) fires can have a major impact on the non-CO₂ greenhouse gas emissions from forests.

For this category, there is no official data available on the area burnt in forests. The activity data has been derived for this category (please refer the methodology section for details) using the forest area as provided by FSI. Given below are details of activity data used in the sub-category. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.12A: An overview of source categories of Forestland				
IPCC ID	GHG source & sink categories	Туре	Quality	Source
3C	Aggregate sources and non-CO ₂ Emissions Sources on Land			
3C1a	Biomass Burning in Forestland	Secondary	High	Forest Survey of India
		Data		State of Forest Reports:
				<u>2017</u>
				2015
				<u>2013</u>
				<u>2011</u>
				<u>2009</u>
				2005

3.12.2 Methodology

The methodological details for estimating emissions from Biomass burning in Forest Land are as under:

Table 3.12B: An overview of Emission factors used for Biomass burning in Forest Land						
IPCC ID	GHG source & sink categories	CH ₄		N ₂ O		
		Method Applied	Emission Factor	Method Applied	Emission Factor	
3C	Aggregate sources and non-CO ₂ Emissions Sources on Land					
3C1a	Biomass burning in Forestland	T2	CS	T2	CS	

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

2006 IPCC guidelines for national GHG inventories is adopted for estimating the GHG emissions from forest fire. The following equation (Equation 2.27, Chapter 2, Vol. 04 {IPCC 2006 Guidelines}, (Refer Annex 1 for sample calculation) was used to estimate methane and nitrous oxide emissions by burning of biomass in forestland.

$$L_{fire} = A \cdot M_B \cdot C_f \cdot G_{ef} \cdot 10^{-3}$$

where,

 L_{fire} = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH₄, N₂O, etc.

A = area burnt, ha

 M_B = mass of fuel available for combustion, tonnes ha⁻¹. This includes biomass, ground litter and dead wood.

 C_f = combustion factor, dimensionless

 G_{ef} = emission factor, g kg⁻¹ dry matter burnt

Steps followed:

Step 1:

Non-CO₂ GHG emissions are estimated for the forestland subjected to biomass burning. The state-wise activity data for the area of the forest burnt was derived by (Reddy, 2017 n.d.)which gives the forest area burnt of each state it could further be apportioned to get the actual Area burnt by using the forest area of the particular state from FSI report.

Step 2:

Mass of fuel available for combustion (M_B) is used from (NATCOM 2 n.d., p. 70)(in tonnes/ha). The value of the selected variable is 13.12 tonnes/ha as per NATCOM II and the same is adopted here as well.

Step 3:

In the absence of country specific values Combustion factor value (C_f) is selected from 2006 IPCC ³⁸ Guidelines. The selected value is 0.36 based on the category 'all primary tropical forests.

Step 4:

Further mass of fuel available for combustion was multiplied with combustion factor to estimate the amount for fuel combusted (Value – 0.36 referred from Table 2. 6 ($V4_02_Ch2_Generic.pdf$, n.d.)

Step 5:

Country specific emission factors (G_{ef}) for methane and nitrous oxide gas were adopted from NATCOM 2 "indnc2.pdf," n.d., p. 70

Step 6:

Finally, the value calculated using Step 4 was multiplied with the area and the country specific emission factor and then added together to estimate emissions from biomass burning in forestland. The above steps were repeated for the methane and nitrous oxide emissions. (Refer to Annexure 1 for sample calculation)

³⁸ Section 4.2.4.3, P-4.28, Chapter 4, Volume 4, 2006 IPCC Guidelines for National GHG Inventories. Values selected from Table 2.6, Chapter 2, Volume 4, 2006 IPCC Guidelines for National GHG Inventories.

3.12.3 Recalculation

Table 3.12C: Source category wise details on the difference between GHG estimates						
Year	Key source category	GHG Emission Es	% Difference			
		Phase-II	Phase-III			
2005	Biomass burning in forest land	0.32	5.02	1488%		
2006	Biomass burning in forest land	0.32	5.04	1490%		
2007	Biomass burning in forest land	0.32	5.06	1497%		
2008	Biomass burning in forest land	0.32	5.08	1504%		
2009	Biomass burning in forest land	0.32	5.10	1506%		
2010	Biomass burning in forest land	0.32	5.12	1508%		
2011	Biomass burning in forest land	0.32	5.14	1510%		
2012	Biomass burning in forest land	0.32	5.16	1512%		
2013	Biomass burning in forest land	0.32	5.18	1514%		

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold.

As seen in table 3.12C, a substantial deviation is observed in phase-3 and phase-2 emissions from the biomass burning in forest land. It is mainly because, in the present phase, we were able to get the state wise proportion of the forest area burnt unlike the previous phase where the total burnt area in year 2000 was taken from NATCOM II which was used to derive the Burnt area factor.

3.12.4 Uncertainty

The activity data for the area under forests at the state level is from Forest Survey of India reports. The area burnt is derived using appropriate proportions from (Reddy, et al. 2017)in activity data arises due to non-availability of data on forest burnt every year India.

The emission factors for biomass burning on forest land is considered from NATCOM II. Uncertainty in emission factors for biomass burning in forest land is not ascertained in NATCOM II.

Table 3.12D: Source category wise description of Qualitative uncertainty							
IPCC	Source	Qualitative Uncertainty	Qualitative Uncertainty				
ID	Category	Activity Data	Emission Factor				
3C1a	Biomass	Uncertainty arise due to various	Uncertainty arise due to various				
	burning in	variables used in the assessment	variables used in the assessment such				
	Forestland	such as fraction of forest burnt, area	as climatic conditions, soil type, water				
		estimation.	etc. Various biological, chemical and				
			physical properties of soil and forest				
			type influence the emissions from soil				
			to the atmosphere				

3.12.5 Recommended Improvements

As and when more detailed surveys are carried out, these estimations will be improved.

3.13 3C1b Biomass Burning in Cropland

3.13.1 Category description

From a climate change perspective, burning of crop residues causes emissions of N₂O and CH₄. CO₂ emissions do not count since it is an offset by the absorption of CO₂ in the process of photosynthesis that caused the biomass growth at the outset. Given below are details of the data used for estimation. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.13A: An overview of source categories of Cropland							
IPCC ID	GHG source & sink categories	Years	Туре	Quality	Source		
3C	Aggregate sources and non-CO₂ Emissions Sources on Land						
3C1a	Biomass Burning in Cropland	2005 to 2008	Secondary Data	High	Planning Commission of India (See table titled-"Production of principal crops - State- wise")		
		2009 to 2015	Secondary Data	High	Agriculture chapter in <u>Statistical Year Book</u> (See table 8.3 under chapter 8 for every year)		

3.13.2 Methodology

The methodological details for estimating emissions from Biomass Burning in Cropland are as under:

IPCC ID	GHG source & sink categories	CH₄		N₂O		
		Method Applied	Emission Factor	Method Applied	Emission Factor	
3.	AFOLU					
3C	Aggregate sources and non-CO ₂ Emissions Sources on Land					
3C1b	Biomass Burning in Cropland	T1	CS	T1	CS	

Table 3.13C: An overview of emission factors used for biomass burning in cropland

In the absence of data on amount of area burnt the methodology used here for estimating emissions from biomass burning in cropland is adopted from NATCOM II.

Steps followed:

Step 1:

Crop residue is burnt in many Indian states particularly in Punjab, Haryana and Western Uttar Pradesh leading to greenhouse gas emissions Jain et al. (2013)³⁹. The crop considered for biomass burning in cropland in India for this study is rice, wheat, cotton, maize, millets, sugarcane, jute, mustard and groundnut). Emissions from crop residue burning was calculated using the following equation⁴⁰:

$$FBCR = \sum Crops(A \cdot B \cdot C \cdot D \cdot E \cdot F)$$

Where,

FBCR is the emissions from residue burning,
A is the crop production,
B is the residue to crop ratio,
C is the dry matter fraction,
D is the fraction burnt⁴¹
E is the fraction oxidized,
F is the emission factor for CH₄ and N₂O
(Refer Annex I for sample calculations)

Step 2:

State-wise crop production data for above mentioned crops were obtained from Planning Commission of India (from 2004-05 to 2007-08) and Statistical Year Books (2008-09 to 2015-16) and a ratio of residue to crop ratio was taken from Jain et. al. 2014.

The production data is provided in fiscal years which was converted to calendar year values by considering 3/4th of the value from the previous financial year (corresponding to 9 months from April to December out of 12 months in a year) and 1/4th from the next financial year (corresponding to 3 months from January to March out of 12 months in a year).

From years 2013-14 onwards, crop production data for only major states is provided by the government. Therefore, the data is apportioned by calculating an average from the corresponding previous years using a linear trend analysis.

Step 3:

Fractions of residues burned in field was taken from Gadde et al. (2009) for rice and for other crops (wheat, maize, millet, groundnut, rapeseed & mustered, cotton and sugarcane) was taken from Jain et al (2014). Fraction of residues oxidized was obtained from Turn et al (1997), and Rapeseed-Mustard crop from Streets et al. 1993 Streets et al. (2003a, b) and Venkatraman et al. (2006). Since, direct value for groundnut and rapeseed-mustard combustion efficiency wasn't available; we have used value of other nuts as a proxy for groundnut from Turn et al (1997) The emission factors for different pollutants emitted from residue burning were taken from Andreae and Merlet (2001).

³⁹http://www.aaqr.org/files/article/619/40 AAQR-13-01-OA-0031 422-430.pdf

⁴⁰<u>https://www.researchgate.net/publication/256376771_Methane_and_nitrous_oxide_emissions_from_Indian_ri</u> ce_paddies_agricultural_soils_and_crop_residue_burning

⁴¹ Fraction Burnt for wheat straw (Rest of India) is 0.10 and Fraction Burnt for wheat in Haryana, Punjab, HP and UP is 0.23

3.13.3 Recalculation

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold. Less than 5% deviation is observed in phase-3 and phase-2 emissions from the biomass burning in Cropland. This is primarily because of the fact that, in phase-3 there is a slight variation in the activity data of crop production which is now sourced from more reliable and publicly available sources unlike phase 2. Also, in this phase the national value has been obtained by totaling the state values.

3.13.4 Uncertainty

Precise data on residue yields and their uses are not available. Assumptions have been made with regard to the amount of crop residue burnt every year in India. The uncertainty associated with the activity data cannot be quantified due to limitations of the data. Estimations are based on expert estimations that are available from published studies in the public domain. India specific emission factors have been derived from a study by Andrea and Merlet 2001⁴². According to this study, uncertainty in emission factors arise due to climatic conditions, soil type, water usage etc. Various biological, chemical and physical properties of soil influence the emissions from soil to the atmosphere.

Table	Table 3.13D: Source category wise description of Qualitative uncertainty					
IPCC	Source	Qualitative Uncertainty				
ID	Category	Activity Data	Emission Factor			
3C1a	Biomass	No specific activity data on	Uncertainty arise due to various variables			
	burning in	crop burning available.	used in the assessment such as fraction of			
	cropland	Therefore, assumptions have	residue burnt, area estimation, climatic			
		been made to estimate the	conditions, soil type, water usage etc. Various			
		proportion of crop residues	biological, chemical and physical properties of			
		burnt every year	soil influence the emissions from soil to the			
			atmosphere, etc.			

3.13.5 Recommended Improvements

As and when more detailed surveys are carried out, these estimations will be improved.

3.13 Estimation of Emissions from Agricultural Soils, including from:

3C4 Direct N₂O emissions from managed soils and

3C5 Indirect N₂O emissions from Managed Soils

3.14.1 Category description

A portion of nitrogenous fertilisers applied in agricultural soils are lost into the atmosphere through direct emissions of N₂O through nitrification and denitrification. In addition, there are also indirect emissions of

⁴² <u>https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2000GB001382</u>

 N_2O through volatilization losses, leaching and runoffs. Given below are the details of data used. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.2	14A: An overviev	v of so	urce categories	of Aggrega	te sources and non-CO2 Emissions Sources
on Land	•		I	1	
IPCC ID	GHG source & s	sink	Туре	Quality	Source
	categories				
3C	Aggregate				
	sources and no	on-			
	CO ₂ Emissions				
	Sources on Lan	d			
3C4	Direct	N_2O	Secondary	High	
	emissions	from			
	managed soils				
3C5	Indirect	N_2O	Secondary	High	
	emissions	from			
	managed soils				
			Urea		Indian Fertilizer Scenario, Department of
					Fertilizers, Ministry of Chemicals and
					Fertilizers Government of India
					http://fert.nic.in/sites/default/files/Fertili
					zers%20Scenario%202017.pdf
					http://fert.nic.in/sites/default/files/Full%
					20Book.pdf
					http://fert.nic.in/sites/default/files/India
					n%20Fertilizer%20SCENARIO-2014.pdf
			Nitrogen		Directorate of Economics and Statistics,
			Consumption		Department of Agriculture, Cooperation
					and Farmers Welfare Ministry of
					Agriculture and Farmers Welfare, Govt of
					India
					https://eands.dacnet.nic.in/latest_2006.
					htm
					https://eands.dacnet.nic.in/Previous_AT
					<u>Glance.htm</u>

3.14.2 Methodology

The methodological details for estimation of N₂O emissions from agriculture soils are as under:

Table3.14	Table3.14B: An overview of emission factors used for N ₂ O emissions from Managed Soils						
IPCC ID	GHG source & sink categories	CH ₄		N₂O	N ₂ O		
		Method	Method Emission		Emission		
		Applied	Factor	Applied	Factor		
3.	AFOLU						
3C	Aggregate sources and non-CO ₂						
	Emissions Sources on Land						
3C4	Direct N ₂ O emissions from			T2	CS		
	Managed Soils						
3C5	Indirect N ₂ O emissions from			T2	CS		
	Managed Soils						

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

Step 1:

As already mentioned above, the data on total N consumption for years 2007-08 to 2014-15 was taken from Directorate of Economics and Statistics, Department of Agriculture, Cooperation and Farmers Welfare Ministry of Agriculture and Farmers Welfare, Govt of India. For year 2004-05 to 2006-07 and 2015-16 the interpolation and extrapolation techniques were used using the CAGR of the above-mentioned period. The month wise data on the actual sale⁴³ of urea was obtained from the annual report 'Indian Fertilizer Scenario' published by the Department of Fertilizers, Ministry of Chemicals and Fertilizers Government of India which was then added up to obtain the annual sales. For years 2009-10 to 2015-16 the sales data was available for all the states. However, for years 2004-05 to 2008-09 the data some minor selling states was combined and provided as 'Others'. So, the average proportion of the sales throughout 2009-10 to 2015-16 was utilised to estimate the state wise sales for the previous years. For calculating the quantity of Nitrogen in Urea, the total urea consumption was multiplied by 46 percent as urea contains 46% Nitrogen⁴⁴. So, N consumed by other fertilizers was found by subtracting the N consumed in urea from the total N consumption.

Step 2:

For the calculation of the nitrogen loss from volatilization of NH_3 and NO_x , a magnitude of 15 percent per kg of urea and other fertilizers was considered instead of IPCC fraction of 10 percent as most Indian soils are low in acidity and high in average temperature therefore resulting in more volatilization losses. The fraction of N lost through leaching is 10 percent of N applied to the soil. It should be noted that the above-mentioned factors have been sourced from BUR-II⁴⁵.

Step 3:

The default IPCC emission factor for N₂O emission for atmospheric NH₃ and NO_x is 1 percent; however, considering characteristics of Indian soils, 0.5 percent emission factor was used for N₂O from volatilized N. Similarly, emission factor used for deposited N from leaching and runoff was 0.5 percent as stated in BUR-II⁴⁶.

⁴³ It was assumed that the sales were equal to the consumption of urea.

⁴⁴ Refer Table 5 <u>http://fert.nic.in/sites/default/files/Full%20Book.pdf</u>

 ⁴⁵ Refer Table 2.11 <u>https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf</u>
 ⁴⁶Refer Table 2.11 <u>https://unfccc.int/sites/default/files/resource/INDIA%20SECOND%20BUR%20High%20Res.pdf</u>

3.14.3 Recalculation

Table 3.14C: Source category wise details on the difference between GHG estimates						
Year	Key source category	GHG Emissio	on Estimates (MtCO ₂ e)	% Difference		
		Phase-II	Phase-III			
2005	Agricultural Soils	37.54	44.66	19%		
2006	Agricultural Soils	40.68	45.03	11%		
2007	Agricultural Soils	42.92	45.43	6%		
2008	Agricultural Soils	44.93	47.22	5%		
2009	Agricultural Soils	46.54	48.87	5%		
2010	Agricultural Soils	49.11	51.71	5%		
2011	Agricultural Soils	51.52	54.22	5%		
2012	Agricultural Soils	51.00	53.34	5%		
2013	Agricultural Soils	50.48	51.07	1%		

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold. As seen in table 3.14C above, a significant deviation is observed in phase-3 and phase-2 emissions from Agricultural soils. This deviation can be attributed to the change in the activity data which is now sourced from more reliable publicly available sources, unlike the previous phase where the data was made available on request.

3.14.4 Uncertainty

Disaggregated data beyond state level in different parts of the country are not available. Assumptions have been made with regard to the usage of fertilizers applied to the agricultural fields. Therefore, the uncertainty associated with the activity data cannot be quantified due to limitations of the data. India specific emission factors have been derived from a study by Bhatia et al 2013. According to this study, uncertainty in emission factors arise due to climatic conditions, soil type, water usage etc. Various biological, chemical and physical properties of soil influence the emissions from soil to the atmosphere.

Table 3.14D: Source category wise description of Qualitative uncertainty					
	Source	Qualitative Uncertainty			
IPCCID	Category	Activity Data Emission Factor			
3C4 & 3C5	Agriculture	Lack of coverage of According to 2006 IPCC guidelines			
	Soils	measurements, spatial (Chapter 11, Volume 04)60			
		aggregation, and lack of uncertainties in estimates of			
		information on specific on-farm emissions from managed soils are			
		practices. caused by uncertainties related to			
		the emission factors that arise from			
		natural variability, partitioning			
		fractions.			

3.14.5 Recommended Improvements

As and when more detailed surveys are carried out, these estimations will be improved.

3.15 3C7 Rice Cultivation

3.15.1 Category description

Paddy fields are a large source of methane emissions from agriculture. Methane emissions arise due to anaerobic decomposition of organic materials from flooded paddy fields. Given below are the details of data used. The data quality is considered high because the activity data has been obtained from credible and relevant Government of India sources that have been engaged in collecting such data every five years for several decades. Further, the credibility of the data is acknowledged by all the relevant stakeholders both within and outside the Government.

Table 3.15A: An overview of source categories of Rice Cultivation					
IPC	GHG source	Туре	Quality	Source	
C ID	& sink				
	categories				
3C	Aggregate				
	sources and				
	non-CO₂				
	Emissions				
	Sources on				
	Land				
3C7	Rice	Secondary	High	Directorate of Economics and Statistics,	
	Cultivation			Department of Agriculture, Cooperation and	
				Farmer's Welfare, Government of India	
				Source:	
				For years 2004-05 to 2012-13: Table 3.1, State-wise	
				Area under Crops (Detailed Tables - State	
				wise(2003-04 to 2012-13) available at:	
				http://eands.dacnet.nic.in/LUS_2012-13.htm)	
				For years 2013-14 to 2015-16: Table 3.1, State-wise	
				Area under Crops (All India Summary Tables	
				available at :	
				http://eands.dacnet.nic.in/LUS_1999_2004.htm	

3.15.2 Methodology

The methodological details for estimation of emissions from rice cultivation are as under:

Table 3.15B: An overview of Emission Factors used for Rice Cultivation						
IPCC ID	GHG source & sink categories	CH ₄ Method Emission Applied Factor		N ₂ O		
				Method Applied	Emission Factor	
3.	AFOLU					
3C	Aggregate sources and non-CO ₂ Emissions Sources on Land					
3C7	Rice Cultivation	Т3	CS			

Notes: T1: Tier 1; T2: Tier 2; T3: Tier 3; CS: Country-specific; PS: Plant-specific; D: IPCC default

The methodology used was the same as that used in NATCOMM II 2012. It has been referred from Gupta et al., (2009) and Pathak et al., (2010) using 2006 IPCC guidelines for national GHG Inventories. The methane emissions are estimated by multiplying the total paddy rice area under different water management regimes (ha) with corresponding Emission Factor. Separate calculations were made for each state and union territory (UT) of India and the national level as well as for each rice ecosystems (i.e., irrigated, rain-fed, and deep-water rice production) and then summed up to estimate the national total. The equation used was:

 $E_{RC} = A_{C} \cdot EF_{W} \cdot 10^{-6}$

Where,

 E_{RC} = CH₄ emissions from rice cultivation (Gg year⁻¹),

A_c = area of rice cultivation under management C (ha)

 EF_W = factor applied for different types of water management (kg CH₄ ha⁻¹)

10⁻⁶ = to convert Kg into Gg

(Refer Annex I for sample calculations)

Step1:

We first calculated the percentage of area under rice under respective water management regime for each state by multiplying the harvested area obtained by percentage area covered under a particular water management regime. The water management regimes in each state were assumed to be the same as that available in Pathak et al 2010, Bhatia et al 2013 and Huke & Huke 1997. The rainfed area was also sub-divided into rainfed flood prone (27.1%) and rainfed drought prone (72.9%) based on the literature reference Huke and Huke 1997. The irrigated rice area was further divided into the irrigated continuously flooded (26.9%), irrigated single aeration (35.7%) and irrigated multiple aeration (37.4%) based on Gupta et al. 2009.

Step2:

Next, we multiplied India specific emission factor of each water management regime with proportion of area under cultivation under each water management across all states in India.

Step 3:

To convert data into Kg to Gg, we multiplied by 10^{-6} .

The specific emission factors (from BUR-II) used were as follows:

Table 3.15C: Emission Factor for different water regime for Rice Cultivation						
Emission from different water regime for rice cultivation	Emission (kg CH ₄ /ha)					
Continuous Flooding	159.74					
Single Aeration	66.2					
Multiple Aeration	19.3					
Flood Prone	189					
Drought Prone	66.84					
Deep Water	190					
Upland	0					

Source: (Table 2.10, "BUR Report," n.d.)

3.15.3 Recalculation

As decided amongst platform partners, a significance threshold of 5% is considered. Recalculation have been reported where the deviation between Phase III and Phase II results is higher than the threshold. A very minute deviation is observed in phase 3 and phase 2 emissions from rice cultivation. This slight variation due to a slight change in emission factors which has been sourced from published EF in BUR 2 ("BUR Report," n.d.) unlike phase 2.

3.15.4 Uncertainty

Precise and disaggregated data on different water management regimes for rice cultivation are not available. Therefore, the uncertainty associated with the activity data cannot be quantified due to limitations of the data. India specific emission factors have been derived from BUR 2 ("BUR Report," n.d.). According to it, there is an underlying uncertainty of 8.0% in emission factors. In rice cultivation category, uncertainties also arise due to non-availability of harvested area under each water regime especially area under single and multiple aeration (Bhatia et al 2012).

Table 3.15D: Source category wise description of Qualitative uncertainty							
IPCC	Source	Qualitative Uncertainty					
ID	Category	Activity Data	Emission Factor				
3C7	Rice Cultivation	Precise and disaggregated data on water regimes for rice cultivation in different parts of the country is not available.	8.0%				

3.15.5 Recommended Improvements

As and when more detailed surveys are carried out, these estimations will be improved.

4 Comparison with national inventories

Table 4: AFOLU Source category wise details of deviation in GHG estimates between GHGPI and official inventories published by Government of India (MtCO ₂ e)										
Key Source	2007			2010			2014			
Category	INCCA	GHGPI	% Deviation	BUR	GHGPI	% Deviation	BUR2	GHGPI	% Deviation	
3A1 Enteric Fermentation	212.1	208.42	-2%	227.03	204.79	-10%	227.16	204.76	-10%	
3A2 Manure Management	2.44	21.86	796%	2.77	21.49	676%	28.10	21.52	-23%	
3B1 Forest Land	-67.8	-97.97	45%	-203.83	-97.97	-52%	-69.67	-124.44	79%	
3B2 Cropland	- 207.52	-1.46	-99%	-110.76	-0.62	-99%	- 248.61	-1.32	-99%	
3B3 Grasslands	10.49	0.58	-94%	55.65	0.42	-99%	17.22	0.66	-96%	
3B5 Settlements	-0.04	0.45	-1214%	2.62	0.47	-82%	-1.58	0.49	-131%	
3B6 Other Land	-	-	-	-	-	-	-	-	-	
3C1a Biomass burning in forest land	-	-	-	3.79	5.23	38%	157.47	5.12	-97%	
3C1b Biomass burning in cropland	6.61	5.75	-12.96%	7.92	6.17	-22%	8.59	5.84	-32%	
3C4&3C5 Direct and Indirect emissions from managed soils	43.4	45.43	4.68%	81.08	50.87	-37%	80.53	51.71	-36%	
3C7 Rice Cultivation	69.87	71.10	1.13%	71.37	69.44	-3%	72.84	69.4	-5%	

3A1 Enteric Fermentation

All the necessary and required data from 18th and 19th Livestock Census of India for years 2007 and 2012 respectively⁴⁷ have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines

<u>INCCA</u>: GHGPI values deviated only by a slight magnitude of 2% from the INCCA estimates which can be attributed to the bottom's up approach taken up by the platform to attain the National values.

<u>BUR-I and BUR-II</u>: During both the years for which data is reported a deviation of 10% is observed which is mainly due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details

⁴⁷ http://dahd.nic.in/documents/statistics/livestock-census
unpacking the BUR inventory is challenging for further analysis. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3A2 Manure Management

All the necessary and required data from Livestock Census of India for 2007 and 2012⁴⁸ have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

<u>INCCA</u>: A huge deviation of 796% was observed from the INCCA values to the fact that it does not provide detailed population data, i.e., category-wise population details are not provided. Further, category wise emissions are also not provided for manure management, instead emissions are reported for the total livestock categories. Furthermore, INCCA report lacks clarity/ transparency on specific Methane emission factors used for Manure Management.

<u>BUR-I and BUR-II:</u> In 2010 and 2014 a deviation of 676% and -23% respectively was observed which is mainly due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3B1 Forest Land

All the necessary and required data from Forest Survey of India⁴⁹ have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

<u>INCCA</u>: A deviation of 45% was noted because the INCCA report uses Forest cover mapping and Forest area mapping for the activity data. For carbon stock calculation, the report analysis the strata layer using GIS mapping. Details of the different strata and the amount of carbon stock associated are not available in the INCCA report. Our analysis uses FSI reports on carbon stock and forest area, therefore, the variation in results.

<u>BUR-I and BUR-II</u>: A deviation of 52% and 79% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3B2 Cropland

All the available data sources from National Remote Sensing Centre have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

<u>INCCA:</u> A deviation of -99% was observed from the INCAA values because the INCCA report does not estimate emissions from the category 'Land converted to Cropland'. It only estimates emissions from 'Cropland remaining Cropland'. Hence, the variation from GHG Platform India results as both the

⁴⁸ http://dahd.nic.in/documents/statistics/livestock-census

⁴⁹ http://fsi.nic.in/

categories have been considered for emission estimation. Furthermore, rate of change of biomass and carbon stock is not available in detail in the INCCA report.

<u>BUR-I and BUR-II</u>: A deviation of -99% was also observed from the BUR values in both the years for which the inventories have been reported i.e. 2010 and 2014. This is due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3B3 Grasslands

All the available data sources from National Remote Sensing Centre have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

<u>INCCA</u>: A deviation of -94% from the INCCA values was observed because the INCCA report does not estimate emissions from the category 'Land converted to Grassland'. It only estimates emissions from 'Grassland remaining Grassland'. Hence, the variation from GHG Platform India results as both the categories have been considered for emission estimation. Furthermore, rate of change of biomass and carbon stock is not available in detail in the INCCA report.

<u>BUR-I and BUR-II</u>: A deviation of -99% and -96% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3B5 Settlements

All the available data sources from National Remote Sensing Centre have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

<u>INCCA</u>: A deviation of -1214% from the INCCA values was observed because INCCA report does not estimate emissions from the category 'Land converted to Settlement'. It only estimates emissions from 'Settlement remaining Settlement'. Hence, the variation from GHG Platform India results as both the categories have been considered for emission estimation. Furthermore, rate of change of biomass and carbon stock is not available in detail in the INCCA report.

<u>BUR-I and BUR-II</u>: A deviation of -82% and -131% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3B6 Other Land

Government of India does not estimate emissions from this category. Therefore, calculations of variance cannot be done.

3C1a. Biomass burning in Forest Land

All the available data sources from Forest Survey of India⁵⁰ have been used. The calculations are consistent with the requirements of best practice as per 2006 IPCC guidelines.

INCCA: This category is not considered under emission estimation in the INCCA report.

<u>BUR-I and BUR-II</u>: A deviation of 38% and -97% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3C1b. Biomass Burning in Cropland

The data that have been used for this estimation are calculated from Ministry of Agriculture and peer reviewed literature mentioned above in the methodology section.

<u>INCCA</u>: A deviation of 12.96% from the INCCA values was observed because the INCCA report does not give detailed activity data in terms of residue burnt in Indian states. Hence, it is difficult to analyze the variation without comparing the base data.

<u>BUR-I and BUR-II</u>: A deviation of -22% and -32% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3C4&3C5 Direct and Indirect emissions from managed soils

The calculations are consistent with the requirements of best practice as per 2006 IPCC Guidelines.

<u>INCCA:</u> A slight deviation of 4.68% from the INCCA values was observed which can be attributed to rounding-off factors and adding up of the state values to get the national value.

<u>BUR-I and BUR-II</u>: A deviation of -37% and -36% was observed in 2010 and 2014 respectively due to lack of greater details of data or of the assumptions that have been made used while in making their calculations that has been used while estimating emissions. In the absence of such details unpacking the BUR inventory is challenging for further analysis.

3C7 Rice Cultivation

The calculations are consistent with the NATCOM 2 and BUR 2.

<u>INCCA:</u> A very minute deviation of 1.13% from the INCCA values was observed which may be due to rounding off calculations adding up of the state values to get the national value.

<u>BUR-I and BUR-II</u>: A deviation of -3% and -5% was observed in 2010 and 2014 respectively which may be due to rounding off calculations adding up of the state values to get the national value.

⁵⁰ http://fsi.nic.in/

Additional Information

To the extent possible, we have tried to adhere to the 2006 IPCC guidelines for national GHG inventories for estimations of emissions from the AFOLU sector for India. Exceptions, however, arise due to lack of availability of data that is required to adhere to IPCC 2006 guidelines. In these cases, we have tried to estimate emissions on the basis of the information obtained during the unpacking of official inventories that are available in the public domain. Specifically, the deviations are for the following sub-sectors:

- 3C1b Biomass Burning in Cropland: For this sub-sector, we have used the methodology that has been followed in NATCOM-II
- 3C4 Direct N₂O emissions from Managed Soils: For this sub-sector, we have used the methodology that has been followed in NATCOM-II.
- 3C5 Indirect N₂O emissions from Managed Soils: For this sub-sector, we have used the methodology that has been followed in NATCOM-II.
- 3C7 Rice Cultivation: For this sub-sector, we have used the methodology that has been followed in NATCOM-II.

Appendix

Annexure I

1. IPCC equation 10.19, Emission Estimation from Enteric Fermentation

$$Emissions = EF_{(T)} \cdot \left(\frac{N_{(T)}}{10^6}\right)$$

Where,

 $\begin{array}{ll} Emissions &= methane \ emissions \ from \ Enteric \ Fermentation, \ Gg \ CH_4 \ yr^{-1} \\ EF_{(T)} &= emission \ factor \ for \ the \ defined \ livestock \ population, \ kg \ CH_4 \ head^{-1} \ yr^{-1} \\ N_{(T)} &= the \ number \ of \ head \ of \ livestock \ species/category \ T \ in \ the \ country \\ T &= species/category \ of \ livestock \end{array}$

Sample Calculation:

For enteric fermentation emissions from Indigenous Dairy Cattle in year 2013:

T = Indigenous Dairy Cattle

 $EF^{51}_{(Indigenous Dairy Cattle)} = 24 \text{ kg CH}_4 \text{ head}^{-1} \text{ yr}^{-1}$ $N_{(Indigenous Dairy Cattle)} = 4,81,41,000^{52}$

- ⇒ Emissions = 24 * (4,81,41,000)/10^6
- \Rightarrow Emissions = 1,347.95 Gg CH₄ yr⁻¹....(1)
- ⇒ Similarly, using the same equation, emissions from Indigenous Non-Dairy Cattle are 2,315.81 GgCH₄yr⁻¹.....(2)

2. IPCC equation 10.20, Emission Estimation from Enteric Fermentation

Where,

Total $CH_{4Enteric}$ = total methane emissions from Enteric Fermentation, Gg CH₄ yr⁻¹ E_i = Emissions for the ith livestock categories and subcategories

Sample Calculation:

Total CH₄ emissions from enteric fermentation from Indigenous Cattle are:

⁵¹ Source: India's Second National Communications to the UNFCCC, 2004

⁵² Using CAGR, livestock derived using 19th Livestock Census of India

Total CH₄ emissions = Emissions (Indigenous Dairy Cattle) + Emissions (Indigenous Non Dairy Cattle)

- \Rightarrow Total CH₄ emissions = (1) + (2)
- \Rightarrow Total CH₄ emissions = 1,347.95 GgCH₄ yr⁻¹ + 2,315.81 GgCH₄yr⁻¹
- \Rightarrow Total CH₄ emissions = 3,662.76 GgCH₄ yr⁻¹

3. IPCC equation 10.21, Emission Factor for Enteric Fermentation

$$EF = \frac{[GE \cdot Y_m \cdot 365]}{55.65}$$

Where,

EF = Emission factor (Kg methane / animal / year),

GE = Gross energy intake (MJ⁵³ / animal / year),

 Y_m = Methane conversion rate which is the fraction of gross energy feed converted to methane

Sample Calculation:

For indigenous dairy cattle in India, dry matter intake is approximately 2%⁵⁴. Average body weight of indigenous dairy cattle is 175 kg. The conversion factor (CF) used for arriving at GE is 18.45 MJ/kg feed. These factors are used to calculate Gross Energy Intake.

Now,

GE = 60.99 MJ/animal/year $Y_m = 6\%^{55}$

Therefore,

$$\Rightarrow$$
 EF = (60.99 x 6% x 365)/(55.65)

4. IPCC equation 10.22, Emission Estimation from Manure Management

$$CH_{4_{Manure}} = \sum_{(T)} \frac{(EF_{(T)} \cdot N_{(T)})}{10^6}$$

Where,

CH _{4Manure}	= methane emissions from Manure Management, Gg CH4 yr ⁻¹
$EF_{(T)}$	= emission factor for the defined livestock population, kg CH ₄ head ⁻¹ yr ⁻¹
$N_{(T)}$	= the number of head of livestock species/category T in the country
Т	= species/category of livestock

Sample Calculation:

Considering methane emissions from manure management for indigenous dairy cattle in year 2013,

⁵³ Assumed to be 18.45

⁵⁴ Swamy and Bhattacharya (2006)

⁵⁵ Swamy and Bhattacharya (2006)

T = Indigenous Dairy Cattle $EF^{56}_{(Indigenous Dairy Cattle)} = 3.50 \text{ kg CH}_4 \text{ head}^{-1} \text{ yr}^{-1}$ $N_{(Indigenous Dairy Cattle)} = 4,81,41,000^{57}$

- ⇒ Emissions = 3.5 * (4,81,41,000)/10^6
- \Rightarrow Emissions = 168.50 Gg CH₄ yr⁻¹.....(3)
- Similarly, using the same equation, emissions from Indigenous Non-Dairy Cattle are 233.14 GgCH₄yr⁻¹......(4)

Total CH₄ emissions (manure) = Manure Management Emissions (Indigenous Dairy Cattle) + Manure Management Emissions (Indigenous Non Dairy Cattle)

- \Rightarrow Total CH₄ emissions (manure) = (3) + (4)
- \Rightarrow Total CH₄ emissions (manure) = 168.50 GgCH₄ yr⁻¹ + 233.14 GgCH₄yr⁻¹
- \Rightarrow Total CH₄ emissions = 401.64 GgCH₄ yr⁻¹

5. IPCC equation 10.25⁵⁸, Emission Estimation from Manure Management

 $N_2O_{animals} = N_2O_{AWMS} = N_T \cdot (N_{ex(T)} \cdot AWMS_T \cdot EF_{3(AWMS)})$

Where,

NO	$-N_{\rm e}O$ omissions from animal production in a country (kg N/yr)
N ₂ O _{animals}	
$N_2 O_{AWMS}$	= N_2O emissions from Animal Waste Management System in the country (kg N/ yr);
N_T	= number of animals of type T in the country
$N_{ex(T)}$	= N excretion of animals of type T in the country (kg N/animal/yr)
$AWMS_T$	= fraction of $N_{ex(T)}$ that is managed in one of the different distinguished animal waste
management s	ystems for animals of type T in the country
$EF_{3(AWMS)}$	= N_2O emission factor for an AWMS (kg N_2O -N/ kg of N_{ex} in AWMS)
Т	= type of animal category

Sample Calculation:

Nitrogen emissions from manure management are calculated using the above equation. However, under this exercise, emission factor was obtained from India's second national communications to the UNFCCC. Therefore, the factors $(N_{ex(T)} \cdot AWMS_T \cdot EF_{3(AWMS)})$ are directly sourced from NATCOMM II.

Considering nitrous dioxide emissions from manure management for indigenous dairy cattle in year 2013,

Emission Factor = 0.0006 kgN₂O/head/year Population = N_T = 4,81,41,000⁵⁹

⁵⁶ Source: India's Second National Communications to the UNFCCC, 2004

⁵⁷ Using CAGR, livestock derived using 19th Livestock Census of India

⁵⁸ <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf</u> - page 10.53

⁵⁹ Using CAGR, livestock derived using 19th Livestock Census of India

- $\Rightarrow N_2 O_{animals} = 0.0006 \times 4,81,41,000$
- $\Rightarrow N_2 O_{animals} = 28,884 \text{ Gg N}_2 \text{O}$

6. IPCC Equation 2.5, Emission Estimation from Land

Stock Difference Method

$$\Delta C = \frac{(C_{t_2} - C_{t_1})}{(t_2 - t_1)}$$

Where,

 $\begin{aligned} \Delta C &= \text{Annual Carbon stock change in pool (tonnes C yr^{-1})} \\ C_{t_2} &= \text{Carbon stock in the pool at time } t_2 \\ C_{t_1} &= \text{Carbon stock in the pool at time } t_1 \end{aligned}$

Sample Calculation: Assuming: $t_2 = 2013$ $t_1 = 2011$

Therefore, $\Delta C = ((5)-(6))/(2013-2011)$

⇔ ΔC = (7044 – 6941)/(2013-2011) MtC

⇒ ΔC = -51.50 MtC

7. IPCC Equation 2.25, Emission Estimation from Land

$$\Delta C_{mineral} = \frac{\left(SOC_0 - SOC_{(0-T)}\right)}{D}$$
$$SOC = \sum_{C,S,I} SOC_{REF_{C,S,I}} \cdot F_{LU_{C,S,I}} \cdot F_{MG_{C,S,I}} \cdot F_{I_{C,S,I}} \cdot A_{C,S,I}$$

where,

 $\begin{array}{ll} \Delta C_{mineral} & = annual \ change \ in \ carbon \ stocks \ in \ mineral \ soils, \ tonnes \ C \ yr^1 \\ SOC_0 & = soil \ organic \ carbon \ stock \ in \ the \ last \ year \ of \ an \ inventory \ time, \ tonnes \ C \\ SOC_{(0-T)} & = soil \ organic \ carbon \ stock \ at \ the \ beginning \ of \ the \ inventory \ time, \ tonnes \ C \\ \end{array}$

⁶⁰ State of Forest Report 2015

⁶¹ State of Forest Report 2013

 SOC_0 and $SOC_{(0-T)}$ are calculated using the SOC equation in the box where the reference carbon stocks and stock change factors are assigned according to the land-use and management activities and corresponding areas at each of the points in time (time = 0 and time = 0-T)

D = Time Dependence, 20 years

C = represents the climate zones, *S* the soil types, and *I* the set of management systems that are present in a country.

 SOC_{REF} = the reference carbon stock, tonnes C ha-1 F_{LU} = stock change factor for land-use systems or sub-system for a particular land-use, dimensionless F_{MG} = stock change factor for management regime, dimensionless F_{I} = stock change factor for input of organic matter, dimensionless A = land area of the stratum being estimated, ha. All land in the stratum should have common biophysical conditions (i.e., climate and soil type) and management history over the inventory time to be treated together for analytical purposes

Sample Calculation:

Considering Land use category 'Grassland remaining grassland' in Andhra Pradesh

 $SOC_{(0-T)}^{62} = 38 \text{ tC/ha}....(7)$ $F_{LU}^{63} = 1$ $F_{MG}^{64} = 0.97$ $F_I^{65} = 1$

Considering Area = 1 hectare for grassland remaining grassland in Andhra Pradesh,

$$SOC_{(0)} = \sum_{C,S,I} SOC_{REF_{C,S,I}} \cdot F_{LU_{C,S,I}} \cdot F_{MG_{C,S,I}} \cdot F_{I_{C,S,I}} \cdot A_{C,S,I}$$

$$\Rightarrow SOC_{(0)} = 38 \times 1 \times 0.97 \times 1 \times 1$$

$$\Rightarrow SOC_{(0)} = 36.86 \text{ tC/ha}......(8)$$

Now,

$$\Delta C_{mineral} = \frac{\left(SOC_0 - SOC_{(0-T)}\right)}{D}$$

Therefore, from (7) & (8)

 $\Delta C_{mineral} = \{(8) - (7)\}/20$

$$\Rightarrow \Delta C_{mineral} = \{36.86 - 38\}/20$$

 $\Rightarrow \Delta C_{mineral} = -0.06 \text{ tC/ha/year}$

^{62 0 =} Grassland; Source: Rao S. (2016)

⁶³ Considering Level = All as per IPCC 2006 Guidelines, Volume 4, Chapter 6

⁶⁴ Considering Level = Moderately degraded as per IPCC 2006 Guidelines, Volume 4, Chapter 6; FMG for tropical = 0.97, FMG for tropical montane = 0.96

⁶⁵ Considering Level of Input = Medium as per IPCC 2006 Guidelines, Volume 4, Chapter 6

8. IPCC Equation 2.27, Emission Estimation from Biomass Burning

Where,

 $L_{fire} = A \cdot M_B \cdot C_f \cdot G_{ef} \cdot 10^{-3}$

 L_{fire} = amount of greenhouse gas emissions from fire, tonnes of each GHG e.g., CH₄, N₂O, etc. A = area burnt, ha

 M_B = mass of fuel available for combustion, tonnes ha-1. This includes biomass, ground litter and dead wood.

 C_f = combustion factor, dimensionless

 G_{ef} = emission factor, g kg-1 dry matter burnt

Sample Calculation:

Consider biomass burning⁶⁶ in Indian Forests in year 2013.

Area burnt in year 2013 (in ha) = A = 3,04,679

Mass of fuel available for combustion (in t/ha) = 13.12

Combustion Factor = 0.36

Emission factor for methane gas (g/kg dry matter burnt) = 9

Emission factor for nitrous dioxide gas (g/kg dry matter burnt) = 0.11 Therefore,

Methane emissions from biomass burning can be calculated as:

 $\Rightarrow L_{fire} = (3,04,679 \times 13.12 \times 0.36 \times 9)/1000$

 \Rightarrow L_{fire} = 12,760 tonnes of methane

Similarly, nitrous oxide emissions from biomass burning are 155.9 tonnes of N2O.

9. Equation used for Biomass Burning in cropland⁶⁷

$$FBCR = \sum Crops(A \cdot B \cdot C \cdot D \cdot E \cdot F)$$

Where,

FBCR is the emissions from residue burning, A is the crop production, B is the residue to crop ratio, C is the dry matter fraction, D is the fraction burnt E is the fraction oxidized, F is the emission factor for CH₄ and N₂O

Sample Calculation:

Consider Residue burning in rice field in Punjab for year 2013,

Rice Production in year 2013 in Punjab ('000 tonnes) = A = 11,294 Residue to Crop Ratio⁶⁸ = B = 1.50

⁶⁶ Note: Source for all the data in this calculation is from India's Second National Communications.

⁶⁷ Bhatia et al. (2013)

⁶⁸ Jain et al. (2014)

Dry Matter Fraction⁶⁹ = C = 0.86 Fraction Burnt⁷⁰ = D = 0.80 Combustion Factor⁷¹ = E = 0.89 Emission Factor for CH_4^{72} = F = 2.70 g/kg

Therefore,

Emissions from Residue Burning in Punjab's Rice fields =

- \Rightarrow FBCR = A * B * C * D * E * F
- ⇒ FBCR = (11,294 x 1.50 x 0.86 x 0.80 x 0.89 x 2.70)/1000
- ⇒ FBCR = 28.007 Gg
- ⇒ FBCR = 28,007.94 tCH₄

10. Equation used for emission estimation from Rice Cultivation⁷³

$$E_{RC} = A_C EF_W 10^{-6}$$

Where,

 E_{RC} = CH₄ emissions from rice cultivation (Gg CH₄ year⁻¹),

- A_c = area of rice cultivation under management C (ha)
- EF_W = emission factor applied for different types of water management (kg CH₄ ha⁻¹)

 10^{-6} = to convert Kg into Gg

Sample Calculation

Consider rice cultivation in Punjab in year 2013 and intermittent multiple aeration water management is used in Punjab.

Area under intermittent multiple aeration water management is estimated by multiplying the total harvested area by the percentage of area falling under the said water management system based on various studies.

So, in this sample calculation

Area of Rice Cultivation under intermittent multiple aeration management= (2849 ha* 99.6)/100

Therefore, area of rice cultivation under intermittent multiple aeration management in Punjab in 2013 (in '000 ha) = $A_c = 2,837$

Emission Factor for intermittent multiple aeration management⁷⁴ = $EF_w = 18 \text{ kg CH}_4/\text{ha}$ Hence,

 \Rightarrow E_{RC} = 51.06 Gg CH₄/year

⁶⁹ Jain et al. (2014)

⁷⁰ Calculations based on data from Gadde et al. (2009)

⁷¹ Turn et al. (1997)

⁷² Andrea and Merlot (2001)

⁷³ Gupta et al. (2009) and Pathak et al. (2010)

⁷⁴ India's Second National Communications to the UNFCCC

Annexure II

Emission estimates (in $MtCO_2e$) from 3A. Livestock sector from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.04
Andhra Pradesh	10.13	10.61	11.09	10.76	10.44	10.11	9.79	9.47	9.21	8.98	8.77
Arunachal Pradesh	0.35	0.35	0.35	0.35	0.34	0.34	0.34	0.34	0.34	0.35	0.36
Assam	6.48	6.74	7.01	7.05	7.09	7.12	7.16	7.20	7.29	7.39	7.50
Bihar	13.08	13.57	14.05	14.17	14.28	14.40	14.52	14.63	14.96	15.37	15.89
Chandigarh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Chhattisgarh	7.43	7.55	7.67	7.64	7.62	7.60	7.58	7.56	7.59	7.65	7.71
Dadra and Nagar Haveli	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.26	0.28	0.29	0.27	0.25	0.24	0.22	0.20	0.19	0.19	0.19
Goa	0.09	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.06
Gujarat	12.12	12.45	12.78	13.26	13.73	14.20	14.67	15.14	15.71	16.32	16.98
Haryana	5.67	5.63	5.59	5.63	5.66	5.69	5.72	5.76	5.82	5.90	6.00
Himachal Pradesh	2.37	2.38	2.38	2.35	2.33	2.30	2.27	2.24	2.23	2.22	2.21
Jammu and Kashmir	3.62	3.70	3.78	3.62	3.47	3.31	3.16	3.00	2.88	2.77	2.66
Jharkhand	7.11	7.33	7.54	7.49	7.44	7.38	7.33	7.28	7.26	7.26	7.26
Karnataka	11.39	11.73	12.08	11.78	11.49	11.20	10.90	10.61	10.40	10.23	10.08
Kerala	1.54	1.50	1.46	1.39	1.31	1.24	1.17	1.10	1.05	1.01	0.98
Lakshadweep	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Madhya Pradesh	20.03	20.76	21.48	20.91	20.33	19.75	19.17	18.59	18.25	17.96	17.72
Maharashtra	17.23	17.19	17.16	16.93	16.71	16.48	16.26	16.03	15.88	15.75	15.63
Manipur	0.33	0.31	0.29	0.28	0.27	0.26	0.25	0.24	0.24	0.23	0.23
Meghalaya	0.61	0.63	0.65	0.65	0.66	0.66	0.67	0.67	0.69	0.70	0.72
Mizoram	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Nagaland	0.41	0.41	0.41	0.38	0.34	0.31	0.27	0.24	0.22	0.20	0.19
Odisha	10.13	9.88	9.64	9.41	9.19	8.97	8.74	8.52	8.46	8.44	8.45
Puducherry	0.06	0.07	0.07	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.04

Punjab	5.90	5.69	5.48	5.57	5.65	5.74	5.82	5.90	6.04	6.19	6.36
Rajasthan	18.74	19.09	19.44	19.78	20.12	20.46	20.80	21.14	21.62	22.16	22.76
Sikkim	0.11	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.12	0.14	0.16
Tamil Nadu	9.89	10.40	10.91	10.33	9.75	9.17	8.59	8.00	7.62	7.28	6.98
Telangana	9.37	9.81	10.25	9.95	9.65	9.35	9.05	8.76	8.52	8.31	8.11
Tripura	0.60	0.63	0.66	0.66	0.66	0.66	0.66	0.66	0.67	0.68	0.69
Uttar Pradesh	30.86	30.96	31.05	32.15	33.24	34.33	35.43	36.52	38.04	39.72	41.57
Uttarakhand	2.24	2.39	2.55	2.48	2.42	2.36	2.30	2.24	2.20	2.17	2.14
West Bengal	11.46	12.63	13.80	13.27	12.75	12.23	11.71	11.18	10.81	10.48	10.18
India	219.79	225.03	230.28	228.95	227.62	226.29	224.96	223.63	224.60	226.30	228.75

Annexure III

Emission estimates (in MtCO₂e) from 3A1. Enteric Fermentation sector from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Andhra Pradesh	9.22	9.66	10.10	9.80	9.51	9.21	8.91	8.62	8.39	8.18	7.98
Arunachal Pradesh	0.29	0.29	0.29	0.29	0.28	0.28	0.28	0.28	0.28	0.29	0.30
Assam	5.72	5.95	6.18	6.22	6.27	6.31	6.35	6.40	6.48	6.58	6.69
Bihar	11.83	12.27	12.72	12.83	12.94	13.05	13.16	13.27	13.57	13.95	14.43
Chandigarh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Chhattisgarh	6.69	6.80	6.92	6.90	6.88	6.86	6.84	6.82	6.85	6.89	6.95
Dadra and Nagar Haveli	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.24	0.25	0.26	0.25	0.23	0.21	0.19	0.17	0.17	0.16	0.16
Goa	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.05
Gujarat	10.99	11.30	11.60	12.03	12.45	12.88	13.30	13.73	14.25	14.80	15.39
Haryana	5.11	5.07	5.03	5.06	5.09	5.11	5.14	5.17	5.23	5.30	5.38
Himachal Pradesh	2.17	2.17	2.17	2.15	2.12	2.10	2.08	2.05	2.04	2.03	2.02
Jammu and Kashmir	3.32	3.39	3.46	3.32	3.18	3.04	2.90	2.75	2.64	2.54	2.44
Jharkhand	6.40	6.60	6.81	6.76	6.71	6.66	6.61	6.56	6.54	6.53	6.53
Karnataka	10.36	10.67	10.99	10.72	10.45	10.19	9.92	9.65	9.46	9.30	9.17
Kerala	1.40	1.37	1.33	1.26	1.19	1.12	1.06	0.99	0.95	0.91	0.87
Lakshadweep	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Madhya Pradesh	18.13	18.80	19.46	18.93	18.41	17.88	17.35	16.82	16.51	16.24	16.02
Maharashtra	15.66	15.62	15.58	15.38	15.17	14.96	14.76	14.55	14.41	14.29	14.18
Manipur	0.27	0.25	0.23	0.23	0.22	0.21	0.21	0.20	0.19	0.19	0.19
Meghalaya	0.52	0.53	0.54	0.55	0.55	0.56	0.56	0.57	0.58	0.59	0.61
Mizoram	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Nagaland	0.32	0.32	0.32	0.29	0.26	0.24	0.21	0.18	0.16	0.15	0.14
Odisha	9.16	8.95	8.73	8.53	8.33	8.13	7.93	7.73	7.68	7.66	7.68
Puducherry	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.04	0.04	0.04

Punjab	5.35	5.16	4.97	5.05	5.13	5.20	5.28	5.35	5.47	5.61	5.76
Rajasthan	17.08	17.41	17.73	18.04	18.34	18.65	18.95	19.26	19.69	20.18	20.72
Sikkim	0.10	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.11	0.12	0.14
Tamil Nadu	8.99	9.46	9.93	9.40	8.87	8.34	7.81	7.28	6.93	6.61	6.34
Telangana	8.52	8.93	9.33	9.06	8.79	8.51	8.24	7.97	7.75	7.56	7.38
Tripura	0.52	0.55	0.58	0.57	0.57	0.57	0.57	0.57	0.57	0.58	0.59
Uttar Pradesh	27.84	27.94	28.04	29.03	30.02	31.01	32.00	32.99	34.36	35.88	37.56
Uttarakhand	2.04	2.18	2.31	2.26	2.20	2.15	2.09	2.04	2.00	1.97	1.95
West Bengal	10.35	11.39	12.42	11.96	11.49	11.02	10.55	10.08	9.75	9.45	9.19
India	198.84	203.63	208.42	207.21	206.00	204.79	203.58	202.37	203.24	204.76	206.97

Annexure IV Emission estimates (in $MtCO_2e$) from 3A2. Manure Management sector from 2005 to 15:

State/UT 20	5 200	5 2007	2008	2009	2010	2011	2012	2013	2014	2015
-------------	-------	--------	------	------	------	------	------	------	------	------

Andaman and Nicobar Island	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Andhra Pradesh	0.91	0.95	0.99	0.96	0.93	0.91	0.88	0.85	0.83	0.81	0.79
Arunachal Pradesh	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Assam	0.76	0.79	0.83	0.82	0.82	0.81	0.81	0.80	0.81	0.81	0.81
Bihar	1.25	1.29	1.33	1.34	1.35	1.35	1.36	1.36	1.39	1.42	1.46
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.73	0.74	0.75	0.75	0.75	0.75	0.74	0.74	0.75	0.75	0.76
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.03	0.03	0.03
Goa	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Gujarat	1.12	1.15	1.18	1.23	1.27	1.32	1.36	1.41	1.46	1.52	1.59
Haryana	0.56	0.56	0.56	0.57	0.57	0.58	0.58	0.59	0.59	0.60	0.61
Himachal Pradesh	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.19	0.19	0.19	0.19
Jammu and Kashmir	0.30	0.31	0.31	0.30	0.29	0.28	0.26	0.25	0.24	0.23	0.22
Jharkhand	0.71	0.73	0.74	0.73	0.73	0.73	0.73	0.72	0.73	0.73	0.73
Karnataka	1.03	1.06	1.09	1.06	1.03	1.01	0.98	0.96	0.94	0.92	0.91
Кегаlа	0.14	0.13	0.13	0.13	0.12	0.12	0.11	0.11	0.11	0.11	0.11
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	1.90	1.96	2.02	1.97	1.92	1.87	1.82	1.77	1.74	1.72	1.70
Maharashtra	1.58	1.58	1.57	1.56	1.54	1.52	1.50	1.48	1.47	1.46	1.45
Manipur	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.04
Meghalaya	0.10	0.10	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Mizoram	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02
Nagaland	0.09	0.09	0.09	0.09	0.08	0.07	0.07	0.06	0.06	0.05	0.05
Odisha	0.97	0.94	0.91	0.88	0.86	0.83	0.81	0.79	0.78	0.78	0.78
Puducherry	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
Punjab	0.55	0.53	0.51	0.52	0.53	0.53	0.54	0.55	0.56	0.58	0.59
Rajasthan	1.66	1.68	1.71	1.74	1.78	1.81	1.85	1.88	1.93	1.98	2.04
Sikkim	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02

Tamil Nadu	0.90	0.94	0.98	0.93	0.88	0.83	0.78	0.73	0.69	0.66	0.64
Telangana	0.85	0.88	0.92	0.89	0.87	0.84	0.82	0.79	0.77	0.75	0.74
Tripura	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10
Uttar Pradesh	3.02	3.02	3.01	3.12	3.22	3.32	3.43	3.53	3.68	3.84	4.01
Uttarakhand	0.20	0.22	0.24	0.23	0.22	0.22	0.21	0.20	0.20	0.20	0.19
West Bengal	1.11	1.24	1.37	1.32	1.26	1.21	1.15	1.10	1.06	1.02	0.99
India	20.94	21.40	21.86	21.74	21.62	21.50	21.38	21.26	21.36	21.53	21.78

Annexure V Emission estimates (in MtCO₂e) from 3B. Land sector from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
----------	------	------	------	------	------	------	------	------	------	------	------

Andaman and Nicobar Island	-7.20	-7.20	-7.20	-7.20	-7.20	-7.20	-7.21	-1.25	-1.25	0.28	0.28
Andhra Pradesh	-14.86	-14.86	-14.86	-14.90	-14.90	-14.90	-14.95	-28.13	-28.13	-36.55	-36.55
Arunachal Pradesh	-21.38	-21.38	-21.38	-21.67	-21.67	-21.67	-21.50	4.70	4.70	5.33	5.33
Assam	-3.44	-3.44	-3.44	-3.46	-3.46	-3.46	-3.47	0.43	0.43	-7.64	-7.64
Bihar	1.52	1.52	1.52	1.18	1.18	1.18	1.33	0.81	0.81	-0.33	-0.33
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.08	-0.08	0.00	0.00
Chhattisgarh	-4.07	-4.07	-4.07	-4.15	-4.15	-4.15	-4.45	1.34	1.34	0.41	0.41
Dadra and Nagar Haveli	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.09	0.09	-0.01	-0.01
Daman and Diu	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.09	-0.09	-0.01	-0.01
Delhi	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.08	-0.08	-0.03	-0.03
Goa	-1.19	-1.19	-1.19	-1.18	-1.18	-1.18	-1.18	0.12	0.12	-0.32	-0.32
Gujarat	2.24	2.24	2.24	2.43	2.43	2.43	2.48	0.26	0.26	0.39	0.39
Haryana	0.50	0.50	0.50	0.51	0.51	0.51	0.52	0.39	0.39	0.19	0.19
Himachal Pradesh	-3.12	-3.12	-3.12	-3.16	-3.16	-3.16	-3.01	-0.20	-0.20	-8.07	-8.07
Jammu and Kashmir	-4.11	-4.11	-4.11	-4.30	-4.30	-4.30	-4.12	-8.79	-8.79	-4.50	-4.50
Jharkhand	-3.31	-3.31	-3.31	-3.39	-3.39	-3.39	-3.31	-0.54	-0.54	-0.16	-0.16
Karnataka	-3.56	-3.56	-3.56	-3.47	-3.47	-3.47	-3.54	-7.82	-7.82	-26.01	-26.01
Kerala	-3.67	-3.67	-3.67	-3.65	-3.65	-3.65	-3.70	-32.63	-32.63	-25.40	-25.40
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	2.25	2.25	2.25	1.90	1.90	1.90	2.51	3.35	3.35	1.97	1.97
Maharashtra	10.72	10.72	10.72	10.67	10.67	10.67	10.12	-0.57	-0.57	0.93	0.93
Manipur	-1.51	-1.51	-1.51	-1.48	-1.48	-1.48	-1.49	-1.27	-1.27	-3.84	-3.84
Meghalaya	-3.15	-3.15	-3.15	-3.18	-3.18	-3.18	-3.16	0.48	0.48	1.98	1.98
Mizoram	-0.97	-0.97	-0.97	-0.99	-0.99	-0.99	-1.00	3.33	3.33	5.19	5.19
Nagaland	-0.56	-0.56	-0.56	-0.53	-0.53	-0.53	-0.51	2.07	2.07	8.41	8.41
Odisha	-8.64	-8.64	-8.64	-8.79	-8.79	-8.79	-8.87	-1.46	-1.46	-13.94	-13.94
Puducherry	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.02	-0.10	-0.10	0.05	0.05
Punjab	-0.12	-0.12	-0.12	-0.13	-0.13	-0.13	-0.12	0.28	0.28	-0.80	-0.80
Rajasthan	4.13	4.13	4.13	2.95	2.95	2.95	4.40	2.65	2.65	-1.78	-1.78
Sikkim	-4.18	-4.18	-4.18	-4.10	-4.10	-4.10	-4.04	0.19	0.19	0.30	0.30
Tamil Nadu	2.77	2.77	2.77	2.80	2.80	2.80	2.75	-38.16	-38.16	-1.51	-1.51

Telangana	1.31	1.31	1.31	1.28	1.28	1.28	1.24	31.70	31.70	-9.32	-9.32
Tripura	-2.78	-2.78	-2.78	-2.85	-2.85	-2.85	-2.87	-0.35	-0.35	2.48	2.48
Uttar Pradesh	-3.50	-3.50	-3.50	-2.83	-2.83	-2.83	-3.18	-0.35	-0.35	-3.88	-3.88
Uttarakhand	-0.32	-0.32	-0.32	-0.36	-0.36	-0.36	-0.30	5.25	5.25	-0.31	-0.31
West Bengal	-20.00	-20.00	-20.00	-20.02	-20.02	-20.02	-20.04	-0.68	-0.68	-0.68	-0.68
India	-90.20	-90.20	-90.20	-92.07	-92.07	-92.07	-90.71	-65.09	-65.09	-117.18	-117.18

Annexure VI

Emission estimates (in MtCO₂e) from 3B1. Forest Land category from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
----------	------	------	------	------	------	------	------	------	------	------	------

Andaman and Nicobar Island	-7.21	-7.21	-7.21	-7.21	-7.21	-7.21	-7.21	-1.25	-1.25	0.28	0.28
Andhra Pradesh	-15.04	-15.04	-15.04	-15.04	-15.04	-15.04	-15.04	-28.22	-28.22	-36.63	-36.63
Arunachal Pradesh	-21.66	-21.66	-21.66	-21.66	-21.66	-21.66	-21.66	4.55	4.55	5.17	5.17
Assam	-2.37	-2.37	-2.37	-2.37	-2.37	-2.37	-2.37	1.53	1.53	-6.54	-6.54
Bihar	1.04	1.04	1.04	1.04	1.04	1.04	1.04	0.51	0.51	-0.63	-0.63
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.07	-0.07	0.00	0.00
Chhattisgarh	-4.64	-4.64	-4.64	-4.64	-4.64	-4.64	-4.64	1.15	1.15	0.22	0.22
Dadra and Nagar Haveli	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.09	0.09	-0.01	-0.01
Daman and Diu	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.09	-0.09	-0.01	-0.01
Delhi	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.08	-0.08	-0.03	-0.03
Goa	-1.16	-1.16	-1.16	-1.16	-1.16	-1.16	-1.16	0.14	0.14	-0.30	-0.30
Gujarat	1.44	1.44	1.44	1.44	1.44	1.44	1.44	-0.78	-0.78	-0.65	-0.65
Haryana	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.09	0.09	-0.11	-0.11
Himachal Pradesh	-3.33	-3.33	-3.33	-3.33	-3.33	-3.33	-3.33	-0.51	-0.51	-8.39	-8.39
Jammu and Kashmir	-5.12	-5.12	-5.12	-5.12	-5.12	-5.12	-5.12	-9.79	-9.79	-5.51	-5.51
Jharkhand	-3.65	-3.65	-3.65	-3.65	-3.65	-3.65	-3.65	-0.88	-0.88	-0.50	-0.50
Karnataka	-3.08	-3.08	-3.08	-3.08	-3.08	-3.08	-3.08	-7.35	-7.35	-25.54	-25.54
Kerala	-2.38	-2.38	-2.38	-2.38	-2.38	-2.38	-2.38	-31.30	-31.30	-24.08	-24.08
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.74	0.74	0.74	0.74	0.74	0.74	0.74	1.58	1.58	0.20	0.20
Maharashtra	9.49	9.49	9.49	9.49	9.49	9.49	9.49	-1.19	-1.19	0.30	0.30
Manipur	-1.63	-1.63	-1.63	-1.63	-1.63	-1.63	-1.63	-1.41	-1.41	-3.98	-3.98
Meghalaya	-3.22	-3.22	-3.22	-3.22	-3.22	-3.22	-3.22	0.43	0.43	1.93	1.93
Mizoram	-1.10	-1.10	-1.10	-1.10	-1.10	-1.10	-1.10	3.23	3.23	5.09	5.09
Nagaland	-0.65	-0.65	-0.65	-0.65	-0.65	-0.65	-0.65	1.93	1.93	8.26	8.26
Odisha	-9.25	-9.25	-9.25	-9.25	-9.25	-9.25	-9.25	-1.83	-1.83	-14.31	-14.31
Puducherry	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.11	-0.11	0.05	0.05
Punjab	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	-0.38	0.02	0.02	-1.06	-1.06
Rajasthan	1.55	1.55	1.55	1.55	1.55	1.55	1.55	-0.20	-0.20	-4.62	-4.62
Sikkim	-4.10	-4.10	-4.10	-4.10	-4.10	-4.10	-4.10	0.13	0.13	0.24	0.24

Tamil Nadu	3.09	3.09	3.09	3.09	3.09	3.09	3.09	-37.82	-37.82	-1.17	-1.17
Telangana	1.18	1.18	1.18	1.18	1.18	1.18	1.18	31.64	31.64	-9.38	-9.38
Tripura	-2.88	-2.88	-2.88	-2.88	-2.88	-2.88	-2.88	-0.36	-0.36	2.47	2.47
Uttar Pradesh	-3.64	-3.64	-3.64	-3.64	-3.64	-3.64	-3.64	-0.81	-0.81	-4.34	-4.34
Uttarakhand	-0.48	-0.48	-0.48	-0.48	-0.48	-0.48	-0.48	5.07	5.07	-0.49	-0.49
West Bengal	-19.73	-19.73	-19.73	-19.73	-19.73	-19.73	-19.73	-0.37	-0.37	-0.37	-0.37
India	-97.97	-97.97	-97.97	-97.97	-97.97	-97.97	-97.97	-72.35	-72.35	-124.44	-124.44

ANNEXURE VII Emission estimates (in MtCO₂e) from 3B2. Cropland category from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
----------	------	------	------	------	------	------	------	------	------	------	------

Andaman and Nicobar Island	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Andhra Pradesh	-0.14	-0.14	-0.14	-0.11	-0.11	-0.11	-0.20	-0.20	-0.20	-0.20	-0.20
Arunachal Pradesh	0.10	0.10	0.10	-0.09	-0.09	-0.09	0.00	0.00	0.00	0.00	0.00
Assam	-1.12	-1.12	-1.12	-1.14	-1.14	-1.14	-1.15	-1.15	-1.15	-1.15	-1.15
Bihar	0.18	0.18	0.18	0.06	0.06	0.06	0.12	0.12	0.12	0.12	0.12
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.20	0.20	0.20	0.25	0.25	0.25	0.02	0.02	0.02	0.02	0.02
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
Gujarat	0.42	0.42	0.42	0.58	0.58	0.58	0.52	0.52	0.52	0.52	0.52
Haryana	0.23	0.23	0.23	0.25	0.25	0.25	0.23	0.23	0.23	0.23	0.23
Himachal Pradesh	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.08	-0.08	-0.08	-0.08	-0.08
Jammu and Kashmir	-0.14	-0.14	-0.14	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15
Jharkhand	0.06	0.06	0.06	0.09	0.09	0.09	0.06	0.06	0.06	0.06	0.06
Karnataka	-0.75	-0.75	-0.75	-0.65	-0.65	-0.65	-0.73	-0.73	-0.73	-0.73	-0.73
Kerala	-1.32	-1.32	-1.32	-1.33	-1.33	-1.33	-1.36	-1.36	-1.36	-1.36	-1.36
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.68	0.68	0.68	0.74	0.74	0.74	1.01	1.01	1.01	1.01	1.01
Maharashtra	0.40	0.40	0.40	0.37	0.37	0.37	0.01	0.01	0.01	0.01	0.01
Manipur	0.11	0.11	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Meghalaya	0.03	0.03	0.03	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.03
Mizoram	0.13	0.13	0.13	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Nagaland	0.06	0.06	0.06	0.09	0.09	0.09	0.13	0.13	0.13	0.13	0.13
Odisha	0.21	0.21	0.21	0.19	0.19	0.19	0.11	0.11	0.11	0.11	0.11
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	0.21	0.21	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20
Rajasthan	0.26	0.26	0.26	0.28	0.28	0.28	0.59	0.59	0.59	0.59	0.59
Sikkim	-0.11	-0.11	-0.11	-0.02	-0.02	-0.02	0.01	0.01	0.01	0.01	0.01
Tamil Nadu	-0.50	-0.50	-0.50	-0.45	-0.45	-0.45	-0.50	-0.50	-0.50	-0.50	-0.50

Telangana	-0.10	-0.10	-0.10	-0.08	-0.08	-0.08	-0.15	-0.15	-0.15	-0.15	-0.15
Tripura	0.11	0.11	0.11	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
Uttar Pradesh	-0.16	-0.16	-0.16	0.52	0.52	0.52	0.19	0.19	0.19	0.19	0.19
Uttarakhand	0.00	0.00	0.00	0.00	0.00	0.00	-0.02	-0.02	-0.02	-0.02	-0.02
West Bengal	-0.39	-0.39	-0.39	-0.39	-0.39	-0.39	-0.42	-0.42	-0.42	-0.42	-0.42
India	-1.46	-1.46	-1.46	-0.62	-0.62	-0.62	-1.32	-1.32	-1.32	-1.32	-1.32

Annexure VIII Emission estimates (in MtCO₂e) from 3B3. Grassland category from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Andhra Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Arunachal Pradesh	0.07	0.07	0.07	0.03	0.03	0.03	0.08	0.08	0.08	0.08	0.08
Assam	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Bihar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gujarat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Haryana	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Himachal Pradesh	0.16	0.16	0.16	0.11	0.11	0.11	0.18	0.18	0.18	0.18	0.18
Jammu and Kashmir	0.10	0.10	0.10	0.04	0.04	0.04	0.13	0.13	0.13	0.13	0.13
Jharkhand	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Karnataka	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Kerala	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maharashtra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Manipur	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Meghalaya	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nagaland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Odisha	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rajasthan	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Sikkim	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Tamil Nadu	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

Telangana	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tripura	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uttar Pradesh	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Uttarakhand	0.05	0.05	0.05	0.03	0.03	0.03	0.06	0.06	0.06	0.06	0.06
West Bengal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
India	0.58	0.58	0.58	0.42	0.42	0.42	0.66	0.66	0.66	0.66	0.66

Annexure IX Emission estimates (in MtCO₂e) from 3B5. Settlements category from 2005 to 15:

State/UT 200	5 2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
--------------	--------	------	------	------	------	------	------	------	------	------

Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Andhra Pradesh	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Arunachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Assam	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Bihar	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gujarat	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Haryana	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Himachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jammu and Kashmir	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jharkhand	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Karnataka	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Kerala	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Maharashtra	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Manipur	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Meghalaya	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nagaland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Odisha	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Rajasthan	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Sikkim	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Tamil Nadu	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Telangana	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Tripura	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uttar Pradesh	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Uttarakhand	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
West Bengal	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
India	0.45	0.45	0.45	0.47	0.47	0.47	0.49	0.49	0.49	0.49	0.49

Annexure X Emission estimates (in MtCO₂e) from 3B6. Other Land category from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Andhra Pradesh	0.30	0.30	0.30	0.23	0.23	0.23	0.26	0.26	0.26	0.26	0.26
Arunachal Pradesh	0.11	0.11	0.11	0.04	0.04	0.04	0.07	0.07	0.07	0.07	0.07
Assam	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Bihar	0.27	0.27	0.27	0.06	0.06	0.06	0.15	0.15	0.15	0.15	0.15
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.34	0.34	0.34	0.22	0.22	0.22	0.14	0.14	0.14	0.14	0.14
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Gujarat	0.36	0.36	0.36	0.40	0.40	0.40	0.50	0.50	0.50	0.50	0.50
Haryana	0.02	0.02	0.02	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.03
Himachal Pradesh	0.17	0.17	0.17	0.16	0.16	0.16	0.21	0.21	0.21	0.21	0.21
Jammu and Kashmir	1.05	1.05	1.05	0.93	0.93	0.93	1.02	1.02	1.02	1.02	1.02
Jharkhand	0.26	0.26	0.26	0.16	0.16	0.16	0.27	0.27	0.27	0.27	0.27
Karnataka	0.23	0.23	0.23	0.22	0.22	0.22	0.23	0.23	0.23	0.23	0.23
Kerala	0.02	0.02	0.02	0.05	0.05	0.05	0.02	0.02	0.02	0.02	0.02
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.81	0.81	0.81	0.40	0.40	0.40	0.74	0.74	0.74	0.74	0.74
Maharashtra	0.80	0.80	0.80	0.77	0.77	0.77	0.58	0.58	0.58	0.58	0.58
Manipur	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
Meghalaya	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nagaland	0.02	0.02	0.02	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
Odisha	0.37	0.37	0.37	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Rajasthan	2.17	2.17	2.17	0.96	0.96	0.96	2.10	2.10	2.10	2.10	2.10
Sikkim	0.03	0.03	0.03	0.01	0.01	0.01	0.04	0.04	0.04	0.04	0.04
Tamil Nadu	0.13	0.13	0.13	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11

Telangana	0.21	0.21	0.21	0.16	0.16	0.16	0.19	0.19	0.19	0.19	0.19
Tripura	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uttar Pradesh	0.25	0.25	0.25	0.23	0.23	0.23	0.21	0.21	0.21	0.21	0.21
Uttarakhand	0.11	0.11	0.11	0.09	0.09	0.09	0.14	0.14	0.14	0.14	0.14
West Bengal	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
India	8.21	8.21	8.21	5.63	5.63	5.63	7.43	7.43	7.43	7.43	7.43

Annexure XI Emission estimates (in MtCO₂e) from 3C. Aggregate Sources and non-CO₂ emissions sources on land sector from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Andhra Pradesh	10.08	10.09	9.91	10.56	9.93	11.33	11.39	10.42	9.28	8.61	8.06

Arunachal Pradesh	0.39	0.37	0.37	0.38	0.38	0.41	0.41	0.43	0.44	0.75	0.59
Assam	5.92	5.54	5.68	6.03	6.17	6.36	6.39	6.29	6.12	6.07	6.06
Bihar	9.66	10.14	10.35	10.45	9.78	9.16	10.01	10.57	10.06	10.14	10.73
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	6.57	6.58	6.59	6.61	6.66	6.75	6.83	6.90	6.89	6.95	6.79
Dadra and Nagar Haveli	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.03	0.02
Goa	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	0.07	0.07	0.08
Gujarat	4.69	4.75	4.85	4.82	4.76	5.28	5.36	4.84	5.09	5.33	5.03
Haryana	4.39	4.46	4.55	4.67	4.76	4.85	5.01	5.00	4.88	4.99	5.17
Himachal Pradesh	0.14	0.14	0.15	0.15	0.14	0.14	0.15	0.15	0.15	0.15	0.16
Jammu and Kashmir	0.30	0.30	0.31	0.34	0.36	0.36	0.35	0.38	0.37	0.35	0.37
Jharkhand	2.75	2.91	2.97	2.98	2.63	2.26	2.51	2.74	2.71	2.58	3.47
Karnataka	4.12	4.16	4.21	4.47	4.79	5.13	5.51	4.70	4.64	4.88	4.65
Kerala	0.79	0.76	0.69	0.69	0.70	0.70	0.70	0.69	0.72	0.65	0.64
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	4.74	4.82	4.87	4.93	5.17	5.33	5.62	5.79	6.14	6.15	6.36
Maharashtra	6.45	6.60	6.89	6.98	7.26	7.88	7.98	7.35	7.74	7.79	7.45
Manipur	0.57	0.56	0.56	0.55	0.55	0.59	0.63	0.56	0.61	0.65	0.61
Meghalaya	0.24	0.24	0.25	0.25	0.24	0.24	0.24	0.18	0.17	0.16	0.16
Mizoram	0.15	0.15	0.15	0.13	0.12	0.10	0.09	0.08	0.08	0.08	0.09
Nagaland	0.38	0.40	0.39	0.39	0.38	0.40	0.40	0.40	0.41	0.41	0.39
Odisha	10.06	10.03	9.80	9.55	9.55	10.04	9.86	9.76	10.02	9.67	9.37
Puducherry	0.11	0.10	0.09	0.08	0.09	0.09	0.07	0.06	0.06	0.05	0.05
Punjab	6.04	6.08	6.15	6.27	6.38	6.52	6.59	6.78	6.60	6.45	6.72
Rajasthan	2.15	2.24	2.34	2.40	2.42	2.79	3.01	3.14	3.12	3.16	3.44
Sikkim	0.05	0.06	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04
Tamil Nadu	5.87	5.88	5.67	6.01	5.94	6.05	6.24	5.45	5.45	5.72	6.31
Telangana	5.58	5.63	5.55	5.91	5.48	6.30	6.27	5.69	6.66	5.88	5.09

Tripura	0.60	0.58	0.58	0.57	0.55	0.57	0.59	0.58	0.57	0.57	0.59
Uttar Pradesh	18.69	18.50	18.42	18.84	18.55	18.61	19.10	19.46	18.96	18.90	18.30
Uttarakhand	0.85	0.85	0.86	0.85	0.83	0.83	0.85	0.83	0.84	0.85	0.94
West Bengal	12.78	13.92	13.94	14.33	14.04	12.80	13.47	13.81	13.53	13.60	13.74
India	125.26	127.02	127.34	130.42	128.81	132.06	135.81	133.20	132.49	131.72	131.56

Annexure XII

Emission estimates (in MtCO₂e) from 3C1. Biomass Burning from Forest Land from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Aussilaura Durada ala	0.00	0.64	0.02	0.05	0.05	0.05	0.07		0.70	0.70	0.75
Andhra Pradesh	0.60	0.61	0.63	0.65	0.65	0.65	0.67	0.68	0.70	0.73	0.75
Arunachal Pradesh	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Assam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Bihar	0.17	0.17	0.17	0.18	0.18	0.19	0.19	0.19	0.19	0.19	0.19
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.48	0.48	0.48	0.48
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gujarat	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Haryana	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Himachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jammu and Kashmir	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jharkhand	0.26	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
Karnataka	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.21	0.21
Kerala	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Maharashtra	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
Manipur	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Meghalaya	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Mizoram	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Nagaland	0.11	0.11	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Odisha	0.84	0.84	0.84	0.84	0.85	0.86	0.86	0.86	0.86	0.87	0.88
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rajasthan	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Sikkim	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tamil Nadu	0.44	0.44	0.45	0.45	0.45	0.45	0.47	0.48	0.50	0.50	0.50

Telangana	0.34	0.34	0.35	0.35	0.34	0.34	0.33	0.32	0.31	0.31	0.32
Tripura	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Uttar Pradesh	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Uttarakhand	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
West Bengal	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04
India	5.02	5.04	5.06	5.08	5.10	5.12	5.14	5.16	5.18	5.23	5.27

Annexure XIII Emission estimates (in MtCO₂e) from 3C2. Biomass Burning from Cropland from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Andhra Pradesh	0.16	0.17	0.19	0.18	0.14	0.17	0.17	0.17	0.17	0.15	0.15
Arunachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Assam	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.06	0.06
Bihar	0.13	0.17	0.16	0.18	0.16	0.17	0.23	0.27	0.24	0.24	0.26
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.05	0.05	0.05	0.05	0.04	0.06	0.06	0.06	0.06	0.06	0.06
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gujarat	0.18	0.18	0.20	0.20	0.17	0.20	0.21	0.17	0.22	0.21	0.18
Haryana	0.50	0.54	0.56	0.55	0.55	0.57	0.62	0.61	0.62	0.60	0.61
Himachal Pradesh	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03
Jammu and Kashmir	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.05	0.04
Jharkhand	0.03	0.05	0.06	0.07	0.04	0.03	0.06	0.07	0.07	0.07	0.07
Karnataka	0.18	0.20	0.22	0.20	0.22	0.28	0.28	0.26	0.27	0.29	0.27
Kerala	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.13	0.13	0.12	0.13	0.14	0.15	0.18	0.21	0.22	0.26	0.29
Maharashtra	0.27	0.44	0.54	0.43	0.41	0.50	0.53	0.46	0.48	0.50	0.44
Manipur	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Meghalaya	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nagaland	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
Odisha	0.07	0.07	0.08	0.07	0.07	0.07	0.06	0.07	0.08	0.08	0.06
Puducherry	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Punjab	1.11	1.11	1.15	1.19	1.19	1.19	1.20	1.23	1.26	1.21	1.24
Rajasthan	0.18	0.19	0.19	0.20	0.18	0.21	0.22	0.23	0.22	0.23	0.22
Sikkim	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tamil Nadu	0.22	0.27	0.26	0.23	0.22	0.23	0.27	0.23	0.23	0.23	0.24
Telangana	0.08	0.08	0.09	0.09	0.07	0.09	0.09	0.09	0.10	0.09	0.07
Tripura	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Uttar Pradesh	1.41	1.48	1.49	1.50	1.48	1.54	1.64	1.69	1.70	1.52	1.58
Uttarakhand	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05
West Bengal	0.17	0.17	0.18	0.18	0.18	0.16	0.17	0.18	0.19	0.19	0.19
India	5.06	5.49	5.75	5.66	5.46	5.84	6.22	6.25	6.35	6.17	6.16

Annexure IVX

Emission estimates (in MtCO₂e) from 3C3. Direct N₂O emissions from managed soils from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Andhra Pradesh	4.17	3.97	3.79	4.04	4.11	4.57	4.74	4.39	3.11	2.62	2.49
Arunachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Assam	0.22	0.23	0.24	0.27	0.30	0.33	0.36	0.36	0.36	0.37	0.40

Bihar	2.07	2.14	2.21	2.25	2.17	2.17	2.34	2.47	2.37	2.37	2.85
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.60	0.62	0.65	0.65	0.73	0.77	0.84	0.87	0.87	0.89	0.93
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.01
Goa	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Gujarat	2.50	2.51	2.52	2.56	2.63	2.90	2.88	2.45	2.69	2.89	2.72
Haryana	2.20	2.23	2.25	2.27	2.30	2.33	2.42	2.32	2.31	2.40	2.48
Himachal Pradesh	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09
Jammu and Kashmir	0.12	0.13	0.13	0.16	0.18	0.18	0.16	0.17	0.17	0.16	0.19
Jharkhand	0.20	0.21	0.21	0.21	0.22	0.20	0.26	0.27	0.22	0.21	0.28
Karnataka	1.80	1.84	1.89	2.03	2.25	2.41	2.80	2.34	2.24	2.37	2.37
Kerala	0.21	0.22	0.22	0.26	0.27	0.28	0.31	0.30	0.32	0.27	0.26
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	1.71	1.80	1.89	1.92	2.18	2.36	2.51	2.50	2.83	2.74	2.89
Maharashtra	2.93	2.98	3.02	3.17	3.47	3.87	3.90	3.43	3.68	3.73	3.54
Manipur	0.04	0.04	0.03	0.03	0.02	0.01	0.01	0.02	0.02	0.02	0.03
Meghalaya	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Nagaland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Odisha	0.62	0.64	0.65	0.70	0.71	0.71	0.76	0.76	0.75	0.75	0.78
Puducherry	0.06	0.06	0.05	0.04	0.04	0.05	0.04	0.03	0.03	0.02	0.02
Punjab	3.08	3.12	3.15	3.19	3.25	3.34	3.39	3.36	3.34	3.25	3.42
Rajasthan	1.53	1.60	1.67	1.70	1.73	2.00	2.17	2.16	2.24	2.27	2.50
Sikkim	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tamil Nadu	1.23	1.26	1.30	1.49	1.48	1.52	1.62	1.43	1.33	1.41	1.59
Telangana	1.89	1.80	1.72	1.83	1.86	2.07	2.15	1.99	2.25	2.08	2.08
Tripura	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02
Uttar Pradesh	6.51	6.55	6.60	6.84	6.95	7.06	7.30	7.55	7.33	7.49	7.18
Uttarakhand	0.25	0.26	0.27	0.27	0.27	0.27	0.29	0.28	0.31	0.33	0.39
-------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
West Bengal	1.56	1.60	1.63	1.67	1.74	1.72	1.93	1.94	1.74	1.78	1.96
India	35.62	35.92	36.24	37.67	38.98	41.25	43.31	41.53	40.65	40.58	41.46

Annexure XV

Emission estimates (in MtCO₂e) from 3C4. Indirect N₂O emissions from managed soils from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Andhra Pradesh	1.06	1.01	0.96	1.02	1.04	1.16	1.20	1.11	0.79	0.66	0.63
Arunachal Pradesh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Assam	0.06	0.06	0.06	0.07	0.08	0.08	0.09	0.10	0.09	0.09	0.10
Bihar	0.53	0.54	0.56	0.57	0.55	0.55	0.53	0.75	0.62	0.60	0.72
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	0.15	0.16	0.16	0.16	0.18	0.20	0.21	0.24	0.22	0.22	0.24
Dadra and Nagar Haveli	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Gujarat	0.63	0.64	0.64	0.65	0.67	0.73	0.73	0.71	0.68	0.73	0.69
Haryana	0.56	0.56	0.57	0.58	0.58	0.59	0.61	0.74	0.61	0.61	0.63
Himachal Pradesh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Jammu and Kashmir	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.05
Jharkhand	0.05	0.05	0.05	0.05	0.06	0.05	0.07	0.07	0.05	0.05	0.07
Karnataka	0.46	0.47	0.48	0.51	0.57	0.61	0.71	0.59	0.57	0.60	0.60
Kerala	0.05	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.08	0.07	0.07
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	0.43	0.46	0.48	0.49	0.55	0.60	0.64	0.73	0.72	0.70	0.73
Maharashtra	0.74	0.75	0.77	0.80	0.88	0.98	0.99	0.87	0.93	0.95	0.90
Manipur	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01
Meghalaya	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mizoram	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nagaland	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Odisha	0.16	0.16	0.16	0.18	0.18	0.18	0.19	0.19	0.19	0.19	0.20
Puducherry	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00
Punjab	0.78	0.79	0.80	0.81	0.82	0.85	0.86	1.04	0.86	0.83	0.87
Rajasthan	0.39	0.41	0.42	0.43	0.44	0.51	0.55	0.69	0.59	0.58	0.63
Sikkim	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Tamil Nadu	0.31	0.32	0.33	0.38	0.38	0.39	0.41	0.38	0.34	0.36	0.40
Telangana	0.48	0.46	0.44	0.46	0.47	0.52	0.54	0.50	0.57	0.53	0.53
Tripura	0.01	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Uttar Pradesh	1.65	1.66	1.67	1.74	1.76	1.79	1.85	2.28	1.90	1.90	1.82
Uttarakhand	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.10
West Bengal	0.40	0.41	0.41	0.42	0.44	0.44	0.49	0.54	0.44	0.45	0.50
India	9.04	9.11	9.19	9.55	9.88	10.46	10.92	11.81	10.42	10.29	10.52

Annexure XVI Emission estimates (in MtCO₂e) from 3C5. Rice Cultivation from 2005 to 15:

State/UT	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Andaman and Nicobar Island	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Andhra Pradesh	4.10	4.32	4.33	4.66	3.98	4.78	4.61	4.06	4.51	4.44	4.04
Arunachal Pradesh	0.37	0.36	0.35	0.36	0.37	0.40	0.40	0.41	0.43	0.73	0.58
Assam	5.50	5.11	5.23	5.55	5.65	5.79	5.79	5.68	5.51	5.45	5.40

1	1			I						I	I
Bihar	6.75	7.12	7.24	7.27	6.71	6.08	6.72	6.90	6.64	6.73	6.71
Chandigarh	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chhattisgarh	5.29	5.27	5.24	5.27	5.22	5.24	5.24	5.24	5.25	5.29	5.08
Dadra and Nagar Haveli	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Daman and Diu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Delhi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Goa	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.07
Gujarat	1.32	1.37	1.43	1.37	1.25	1.39	1.49	1.46	1.44	1.44	1.39
Haryana	1.14	1.13	1.16	1.28	1.32	1.35	1.35	1.32	1.35	1.39	1.46
Himachal Pradesh	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Jammu and Kashmir	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Jharkhand	2.20	2.34	2.37	2.38	2.04	1.71	1.86	2.06	2.10	1.97	2.79
Karnataka	1.48	1.45	1.42	1.52	1.55	1.63	1.52	1.31	1.37	1.41	1.20
Kerala	0.50	0.46	0.40	0.36	0.35	0.33	0.29	0.30	0.31	0.29	0.29
Lakshadweep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Madhya Pradesh	2.12	2.09	2.02	2.04	1.95	1.87	1.94	1.99	2.02	2.10	2.10
Maharashtra	1.98	1.90	2.03	2.03	1.97	1.99	2.04	2.06	2.12	2.08	2.04
Manipur	0.31	0.30	0.30	0.30	0.31	0.36	0.40	0.32	0.37	0.41	0.36
Meghalaya	0.19	0.19	0.19	0.19	0.19	0.18	0.18	0.12	0.11	0.11	0.11
Mizoram	0.10	0.10	0.10	0.08	0.07	0.05	0.04	0.04	0.03	0.03	0.04
Nagaland	0.26	0.28	0.28	0.28	0.27	0.29	0.29	0.29	0.30	0.30	0.28
Odisha	8.37	8.33	8.07	7.77	7.75	8.22	7.98	7.87	8.14	7.77	7.45
Puducherry	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.03
Punjab	1.07	1.06	1.05	1.09	1.12	1.14	1.14	1.15	1.15	1.16	1.19
Rajasthan	0.02	0.02	0.02	0.03	0.04	0.03	0.03	0.03	0.03	0.04	0.05
Sikkim	0.05	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04
Tamil Nadu	3.67	3.58	3.34	3.46	3.41	3.45	3.47	2.92	3.05	3.23	3.58
Telangana	2.79	2.96	2.96	3.18	2.73	3.29	3.16	2.78	3.44	2.87	2.09
Tripura	0.49	0.47	0.47	0.46	0.44	0.46	0.47	0.45	0.45	0.46	0.48
Uttar Pradesh	9.07	8.76	8.61	8.71	8.31	8.17	8.26	7.89	7.98	7.94	7.67
Uttarakhand	0.48	0.46	0.45	0.45	0.43	0.44	0.42	0.40	0.39	0.39	0.39

West Bengal	10.62	11.72	11.68	12.03	11.65	10.44	10.84	11.11	11.12	11.14	11.05
India	70.52	71.47	71.10	72.46	69.38	69.40	70.23	68.45	69.89	69.46	68.14

References

- 16th Indian Livestock Census Report (1997) Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India. http://dahd.nic.in/documents/statistics/livestock-census
- 17th Indian Livestock Census. All India Summary Report (2003) Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India. http://dahd.nic.in/documents/statistics/livestock-census
- 18th Livestock Census. All India Report on Quick Tabulation Plan (2007) Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India. http://dahd.nic.in/documents/statistics/livestock-census
- 19th Livestock Census. All India Report (2012) Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India. http://dahd.nic.in/documents/statistics/livestock-census
- ALGAS, India national report on Asia least cost GH abatement strategy. ADB and UNDP, Manila, the Philippines, 1998 https://www.climate-eval.org/sites/default/files/evaluations/115%20Asia%20Least-Cost%20Greenhouse%20Gas%20Abatement%20Strategy%20%28ALGAS.pdf
- Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. https://doi.org/10.1029/2000GB001382
- Arora, G., Chaturvedi, S., Kaushal, R., Nain, A., Tewari, S., Alam, N. M., & Chaturvedi, O. P. (2014). Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 38, 550–560. https://doi.org/10.3906/tar-1307-94
- Atzema, A. J. (1995). Determination of quality of forecast moisture content of cut grass using forecast weather elements. Journal of Agricultural Engineering Research, 61, 1–10.
- Badiyala, D., and Verma S.P. (1990) Effect of supplemental sources and fertilizer nitrogen on physio-chemical properties of acid soils of Himachal Pradesh, Indian Journal of Agronomy, Vol 35 (1&2):144-149
- Bandyopadhyay, S., Pathak, H., Kalra, N., Aggarwal, P.K., Kaur, R., Joshi, H.C., Choudhary, R. and Roetter, R.P. 2001. Yield estimation and agro-technical description of production systems. In Aggarwal, P.K., Roetter, R.P., Kalra, N., Keulen, H. van, Hoanh, C.T., Laar, H.H. van (eds.), Land Use Analysis and Planning for Sustainable Food Security: With an Illustration for the State of Haryana, India. New Delhi. pp. 61–89. http://library.wur.nl/WebQuery/wurpubs/316344
- BC Mandal, AK Mandal and AB Ghosh(1981), Changes in Organic Carbon in a Gangetic alluvium after five years of multiple cropping with jute-rice-wheat, Journal of Indian Society of Soil Science, Vol 30(1):38-42; http://agris.fao.org/agris-search/search.do?recordID=US201301994080
- Bhatia, A., Pathak, H., Aggarwal, P., 2004. Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr. Sci. 317–324.
 https://www.researchgate.net/publication/248354019 Rice straw as a renewable energy source in India Thailand and the Philip

https://www.researchgate.net/publication/248354019_Rice_straw_as_a_renewable_energy_source_in_India_Thailand_and_the_Philip pines_Overall_potential_and_limitations_for_energy_contribution_and_greenhouse_gas_mitigation

- Bhattacharyya, R., Prakash, V., Kundu, S., Srivastava, A.K., & Gupta, H.S., (2004) Effect of long-term manuring on soil organic carbon, bulk density and water retention characteristics under soybean-wheat cropping sequence in North-Western Himalayas, Journal of the Indian Society of Soil Science, Vol52(3):238-242 http://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=52&issue=3&article=006
- CTA-CCAFS, 2011. Farming's climate-smart future: Placing agriculture at the heart of climate-change policy. Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA) and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCFAS).
- Chowdhury, S. L., Ram, S., & Giri, G. (1974). Effect of inoculum, nitrogen and phosphorus on root nodulation and yield of lentil varieties. Indian Journal of Agronomy. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US201302746649
- Dagar. J.C, Minhas P.S, Eds. (n.d.). Agroforestry for the Management of Waterlogged Saline Soils and Poor-quality Waters. Springer. Retrieved from

https://www.researchgate.net/publication/295859096_Agroforestry_for_the_Management_of_Waterlogged_Saline_Soils_and_Poor-quality_Waters

- Deng, L., Zhu, G., Tang, Z., & Shangguan, Z. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004
- Devaranavadgi,et.al. (n.d.). Effect of alley cropping on light transmission ratio, growth and yield of winter sorghum (Sorghum bicolor) under semi-arid environment. ResearchGate. Retrieved from https://www.researchgate.net/publication/287445388_Effect_of_alley_cropping_on_light_transmission_ratio_growth_and_yield_of_wi nter_sorghum_Sorghum_bicolor_under_semi-arid_environment
- Dhiman, S. D., Nandal, D. P., & Hari Om (CCS Haryana Agricultural University, K. (India) R. R. S. (2000). Productivity of rice (Oryza sativa)wheat (Triticum aestivum) cropping system as affected byt its residue management and fertility levels. Indian Journal of Agronomy (India). Retrieved from <u>http://agris.fao.org/agris-search/search.do?recordID=IN2003000753</u>
- FSI. 2011. Carbon Stock in India's Forests. Carbon Stock Report. , FSI.
- Gadde, B., Menke, C., & Wassmann, R. (2009). Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy, 33(11), 1532–1546. https://doi.org/10.1016/j.biombioe.2009.07.018
- Gupta, P. K., Gupta, V., Sharma, C., Das, S. N., Purkait, N., Adhya, T. K., ... Iyer, C. S. P. (2009). Development of methane emission factors for Indian paddy fields and estimation of national methane budget. Chemosphere, 74(4), 590–598. https://doi.org/10.1016/j.chemosphere.2008.09.042
- Gupta, P. K., Jha, A. K., Koul, S., Sharma, P., Pradhan, V., Gupta, V., ... Singh, N. (2007). Methane and nitrous oxide emission from bovine manure management practices in India. Environmental Pollution, 146(1), 219–224. https://doi.org/10.1016/j.envpol.2006.04.039
- Gupta P.K, Jha Arvind, Tomar M, Mitra A.P. (n.d.). Greenhouse gas emission uncertainty reduction in Indian agriculture sector: Livestock. ResearchGate. Retrieved from

https://www.researchgate.net/publication/269097990_Greenhouse_gas_emission_uncertainty_reduction_in_Indian_agriculture_sector _Livestock

- Hansen, S. (n.d.). EXTERNAL EVALUATION OF THE CONCURRENT PHASE OF RETA 5592: A STUDY OF LEAST-COST GREENHOUSE GAS ABATEMENT STRATEGY (ALGAS PROJECT), 66.
- Hegde D.M. (1998). Long-term sustainability of productivity in rice (Oryza sativa)-wheat (Triticum aestivum) system in subhumid ecosystem through integrated nutrient supply. ResearchGate. Retrieved from https://www.researchgate.net/publication/289381108_Long-term_sustainability_of_productivity_in_rice_Oryza_sativa-wheat_Triticum_aestivum_system_in_subhumid_ecosystem_through_integrated_nutrient_supply
- Hegde D.M. (n.d.). Effect of integrated nutrient supply on crop productivity and soil fertility in rice (Oryza sativa) Wheat (Triticum aestivum) system in semi-arid and humid ecosystems. ResearchGate. Retrieved from https://www.researchgate.net/publication/279714905_Effect_of_integrated_nutrient_supply_on_crop_productivity_and_soil_fertility_i n_rice_Oryza_sativa_-_Wheat_Triticum_aestivum_system_in_semi-arid_and_humid_ecosystems
- ICAR [Indian Council of Agricultural Research] (1997) Handbook of Animal Husbandry, ICAR, New Delhi.
- ICAR, 2015. VISION 2020 Indian Council of Agricultural Research, New Delhi, India. http://www.icar.org.in/files/vision-2020.pdf
- INCCA Indian Network for Climate Change Assessment. (2010). India: Greenhouse Gas Emissions 2007. Ministry of Environment and Forests Government of India.
- India-BUR [India First Biennial Update Report to the United Nations Framework Convention on Climate Change] (2015) Ministry of Environment, Forest and Climate Change, Government of India. http://unfccc.int/resource/docs/natc/indbur1.pdf
- India Fertilzer Scenario (2010), Department of Fertilizers Ministry of Chemicals and Fertilizers Government of India. http://fert.nic.in/sites/default/files/Indian-Fertilizer-Scenario.pdf
- India Fertilzer Scenario (2012), Department of Fertilizers Ministry of Chemicals and Fertilizers Government of India. http://fert.nic.in/sites/default/files/indian%20fertilizer%20scenario2012.pdf
- India Fertilzer Scenario (2014), Department of Fertilizers Ministry of Chemicals and Fertilizers Government of India. http://fert.nic.in/sites/default/files/Indian%20Fertilizer%20SCENARIO-2014.pdf
- India Fertilzer Scenario (2015), Department of Fertilizers Ministry of Chemicals and Fertilizers Government of India. http://fert.nic.in/sites/default/files/Indian%20Fertilizer%20SCENARIO-2015.pdf
- INDIAN COUNCIL OF FORESTRY RESEARCH AND EDUCATION. (2009). *India's Forest and Tree Cover: Contribution as a Carbon Sink*. Dehradoon: Indian Council of Forestry Research and Education.
- IPCC [Inter-Governmental Panel on Climate Change] (2006) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, by Metz, B., Davidson, O.R., Bosch, P.R., Dave, R. and Meyer, L.A. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
- IPCC [Inter-Governmental Panel on Climate Change] (1996) Climate Change 1995: The Science of Climate Change Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, by Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Markell, K. (Eds.) Cambridge University Press, Cambridge http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html

- Jain, N., Bhatia, A., Pathak, H., 2014. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 14, 422–430. https://www.researchgate.net/publication/277676603_Emission_of_Air_Pollutants_from_Crop_Residue_Burning_in_India
- Jha Gajanand, Chaudhary S.K, Thakur, R.B. (n.d.). Effect of combined use of green-manure crop and nitrogen on productivity of rice (Oryza sativa)-wheat (Triticum aestivum) system under lowland rice | Request PDF. ResearchGate. Retrieved from https://www.researchgate.net/publication/287445380_Effect_of_combined_use_of_green-manure_crop_and_nitrogen_on_productivity_of_rice_Oryza_sativa-wheat_Triticum_aestivum_system_under_lowland_rice
- Kaul, M., Dadhwal, V. K., & Mohren, G. M. J. (2009). Land use change and net C flux in Indian forests. Forest Ecology and Management, 258(2), 100–108. https://doi.org/10.1016/j.foreco.2009.03.049
- Khatua, K. B., Chaudhury, S. C., Panda, M., & Mishra, A. (Orissa U. of A. and T. (1976). Nitrogen, phosphorus and potash requirement of high yielding rice [India]. Indian Journal of Agronomy (India). Retrieved from http://agris.fao.org/agris-search/search.do?recordID=IN7701500
- Kumar, A. and Yadav, D.S. (2005) Influence of continuous cropping and fertilization on nutrient availability and productivity of an alluvial soil, Journal of the Indian Society of Soil Science, Vol53(2):194-198
- Lal, R. (2004). Soil Carbon Sequestration in India. Climatic Change, 65(3), 277–296. https://doi.org/10.1023/B:CLIM.0000038202.46720.37
- Maikhuri, R. K., Semwal, R. L., Rao, K. S., Singh, K., & Saxena, K. G. (2000). Growth and ecological impacts of traditional agroforestry tree species in Central Himalaya, India. Agroforestry Systems, 48(3), 257–271. https://doi.org/10.1023/A:1006344812127
- Mandal, B. C., Mandal, A. K., & Ghosh, A. B. (1982). Changes in organic carbon and total nitrogen in a Gangetic alluvium after five years of multiple cropping with jute-rice-wheat. Journal of the Indian Society of Soil Science. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US201301994080
- NATCOM I [National Communication I] (2004) India's Initial National Communication to the United Nations Framework Convention on Climate Change. Ministry of Environment and Forests, Government of India; http://unfccc.int/resource/docs/natc/indnc1.pdf
- NRSC. 2007. National Land Use and Land Cover Mapping using Multi-Temporal AWiFS Data. Technical Document, Hyderabad: NRSC. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/0506.pdf.
- NRSC. 2010. National Land Use and Land Cover Mapping Using Multi-Temporal AWiFS Data. Technical Document, Hyderabad: NSRC. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/0809.pdf.
- NRSC. 2013. National Land Use and Land Cover Mapping Using Multi-Temporal AWiFS Data. Technical Document, Hyderabad: ISRO. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/1314.pdf.
- NRSC. 2012. National Land Use and Land Cover Mapping Using Multi-Temporal AWiFS Data. Technical Document, Hyderabad: ISRO. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC250/1213.pdf.
- Olander, L., Wollenberg, E., Tubiello, F., & Herold, M. (2013). Advancing agricultural greenhouse gas quantification *. Environmental Research Letters, 8(1), 011002. https://doi.org/10.1088/1748-9326/8/1/011002

- P. Bhattacharyya, Yadav, R.P.. & Agnihotri, Y. (2009), 'Impact of Prevalent Silviculture Systems on Soil Stability and Potential Carbon Storage in Shivalik Region of Lower Himalayas', Journal of Indian Society of soil science 57, 71-75. http://en.ustc.findplus.cn/?h=articles&db=edsijc&an=diva.jisss.57.1.012
- Pachauri, R. K., Mayer, L., & Intergovernmental Panel on Climate Change (Eds.). (2015b). *Climate change 2014: synthesis report*. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
- Prabhakara Setty, T.K. & Janardhana Gowda, N.A.. (1997). Performance of rice (Oryza sativa)-based cropping systems in coastal Karnataka. 42. 5-8.
- Pathak, H., Singh, B., Society for Conservation of Nature (New Delhi, I., Indian Nitrogen Group, International Nitrogen Initiative, & South Asian Nitrogen Centre. (2010). Greenhouse gas emission and mitigation in Indian agriculture: a review. Noida: Published by Indian Nitrogen Group, Society for Conservation of Nature in association with South Asian Nitrogen Centre, International Nitrogen Initiative.
- Prasad N.K, Kumar S. (n.d.). Nutrient harvest and soil fertility as influenced by legume-wheat (Triticum aestivum) sequences. ResearchGate. Retrieved from https://www.researchgate.net/publication/285615500_Nutrient_harvest_and_soil_fertility_as_influenced_by_legumewheat Triticum aestivum sequences
- Pye-Smith C. (2011, December 1). Farming's climate-smart future: placing agriculture at the heart of climate-change policy. Retrieved December 17, 2018, from https://ccafs.cgiar.org/publications/farmings-climate-smart-future-placing-agriculture-heart-climate-change-policy
- RB Thakur, SK Chaudhary and G Jha(1999)Effect of combined use of green-manure crop and nitrogen on productivity of rice (Oryza sativa)-wheat(Triticum aestivum) system under lowland rice,Indian J.Of agronomy,Vol44(4):664-668 (https://goo.gl/4Na4cp)
- RB Thakur,SK Choudhary,G Jha&VK Mishra(1998) Effect of crop-establishment practices on wheat (Triticum aestivum) productivity and soil health under lowland rice(Oryza sativa)-wheat cropping systems in coastal Karnataka,Indian J.Of agronomy,Vol43(4):567-571
- Reddy, C S, C S Jha, G Manaswani, VVL P Alekhya, S V Pasha, K V Satish, P G Diwakar, and V K Dadhwal. 2017. "Nationwide assessment of forest burnt area in India using Resourcesat-2 AWiFS data." *Current Science*, 10 April: 1521-1532.
- RK Tondon and Chokhey Singh(1962) Rotational and cultural studies in wheat, Indian Journal of Agronomy, Vol 7:10-18 (pdfpills.com/i/isa-india.in1.html)
- Saha, R., & Jha, P. (n.d.). Carbon Sequestration Potentials of Agroforestry Systems under Climate Change Scenario Brief Review with Special Emphasis on North-Eastern Hill Regions, 12, 7.
- Sandhu, S Parminder. (2016). PRODUCTIVITY, QUALITY AND SOIL HEALTH OF RICE-(Oryza sativa L.) Wheat (Triticum aestivum L.) CROPPING SYSTEM IN RELATION TO LONG TERM INTEGRATED NUTRIENT MANAGEMENT. PUNJAB AGRICULTURAL UNIVERSITY LUDHIANA - 141004, Ludhiana. Retrieved from https://www.researchgate.net/publication/296077703_Performance_of_rice_Oryza_sativabased_cropping_systems_in_coastal_Karnataka
- Sanjay Kumar and NK Prasad(1999)Soil fertility and yield as influenced by different legume-wheat (Triticum aestivum) sequences,Indian J.Of agronomy,Vol44(3):488-492

(https://www.researchgate.net/publication/285615500_Nutrient_harvest_and_soil_fertility_as_influenced_by_legume-wheat_Triticum_aestivum_sequences)

- SASCOM [South Asian START Committee] (1998) GHG Emissions in India for the base year 1990. Scientific Report No 11, SASCOM Centre on Global Change, CSIR- NPL, New Delhi.
- Saxena, K. G., Rao, K. S., Sen, K. K., Maikhuri, R. K., & Semwal, R. L. (2001). Integrated Natural Resource Management: Approaches and Lessons from the Himalaya. Conservation Ecology, 5(2). https://doi.org/10.5751/ES-00289-050214
- SB Devaranavadgi, CS Hunashal, MB Patil, H Venkatesh and SY Wali(2003), Effect of alley cropping on light transmission ratio, growth and yield of winter sorghum (Sorghum bicolor) under semi arid environment, Indian Journal Of agronomy, Vol 48(2):108-110 (https://www.researchgate.net/publication/287445388_Effect_of_alley_cropping_on_light_transmission_ratio_growth_and_yield_of_w inter_sorghum_Sorghum_bicolor_under_semi-arid_environment)
- SD Dhiman, DP Nandal and hari Om(2000) Productivity of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system as affected by its residue managemnt and fertility levels, Indian J.Of agronomy, Vol45(1)1-5 (http://agris.fao.org/agris-search/search.do?recordID=IN2003000753)
- SD Singh and DL Vyas(1970) Studies on manurial value of tumbia (Citrullus colocynthis)oil cake, Indian Journal of Agronomy, Vol 15:173-176 (https://eurekamag.com/research/014/690/014690276.php)
- Sengar, S. S. (z a. R. S., Wade, L. J. (International R. R. I., Baghel, S. S. (cau, Singh, R. K. (IRRI-R., & Singh, R. (nduat. (2000). Effect of nutrient management on rice (Oryza sativa) in rainfed lowland of southeast Madhya Pradesh. Indian Journal of Agronomy (India). Retrieved from http://agris.fao.org/agris-search/search.do?recordID=IN2003000414
- Shukla, P., & Pathak, A. N. (1974). Nitrogen, phosphorus and potash requirements of high yielding wheat in central and north eastern alluvial zones of Uttar Pradesh. Indian Journal of Agronomy. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US201303085849
- Singh, M., Warsi, A. S., & Agrawal, J. P. (1973). Optimum sowing depth of rainfed barley. Indian Journal of Agronomy. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US201302209736
- SL Chowdhury, Sewa Ram and Gajendra Giri(1974) Effect of inoculum, nitrogen and phosphorus on root nodulation and yield of lentil varieties, Indian Journal of Agronomy, Vol 19:274-276 (http://agris.fao.org/agris-search/search.do?recordID=US201302746649)
- Soil Carbon sequestrtion in India, R. Lal, Climatic Change, 65; 277-296, 2004 (https://link.springer.com/article/10.1023/B:CLIM.0000038202.46720.37)
- Sondara Rao, W. V. B., & Krishan, A. (1963). The effect of manuring and rotation on the soil fertility status and composition of barley crop in the permanent manurial series (A) at Pusa Bihar. Indian J. Agron. Retrieved from https://eurekamag.com/research/014/240/014240319.php
- Sreenivas, K., Dadhwal, V. K., Kumar, S., Harsha, G. S., Mitran, T., Sujatha, G., ... Ravisankar, T. (2016). Digital mapping of soil organic and inorganic carbon status in India. Geoderma, 269, 160–173. https://doi.org/10.1016/j.geoderma.2016.02.002

- Stalin, P., Ramanathan, S., Nagarajan, R., and Natarajan, K., (2006) Long-term effect of continuous manurial practices on grain-yield and some soil chemical properties in rice based cropping systems, Journal of the Indian Society of oil Science, Vo54(1):30-37; http://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=54&issue=1&article=006
- Streets, D. G., Yarber, K. F., Woo, J.-H., & Carmichael, G. R. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2003GB002040
- Sudhakar Reddy, C., Jha, C. S., Manaswini, G., Padma Alekhya, V. V. L., Vazeed Pasha, S., Satish, K. V., ... Dadhwal, V. K. (2017). Nationwide Assessment of Forest Burnt Area in India Using Resourcesat-2 AWiFS Data. Current Science, 112(07), 1521. https://doi.org/10.18520/cs/v112/i07/1521-1532
- Swamy, M., & Bhattacharya, S. (2006). Budgeting anthropogenic greenhouse gas emission from Indian livestock using country-specific emission coefficients. CURRENT SCIENCE, 91(10), 15.
- Swamy, M. and Ramasami, T. (1997) Methane emission from India through Enteric Fermentation: An estimate: In Proc. IGBP Symposium on Changes in Global Climate due to Natural and Human Activities (suppl.)", 15-17, Jan. 1997, Bhubaneswar. pp 24-26.
- Swamy, M. and Shashirekha V. (2003) Uncertainty Reduction in Estimation of Methane from Domestic Livestock and Abatement Stategy. In Proc: 4th All India People's Technology Congress., EV-16 (69-73), 22-23, Feb. 2003, Kolkata
- Swamy, M. and Shashirekha, V. 2006. Managing methane emission from domestic livestock. In Collaborating to Combat Climate Change, Ahluwalia, J.S (Ed.) MM Publishing for World Environment Foundation, London. pp. 320 332. (https://goo.gl/VxSxx2)
- Swamy, M., Singhal, K.K., Gupta, P.K., Madhu Mohini and Mitra, A.P. (2004) Reduction in Uncertainties from Livestock Emissions. In Climate Change and India: Uncertainty reduction in GHG inventory estimates. A.P. Mitra et al., (Eds.) NATCOM – MoEF publication, University Press, New Delhi. pp: 223 – 241.

(https://www.researchgate.net/publication/269097990_Greenhouse_gas_emission_uncertainty_reduction_in_Indian_agriculture_secto r_Livestock)

- Swamy. M. and Shashirekha, V. (2003) Country Specific Emission Co-efficients for Estimation of Methane from Livestock Sector. In: Proc. NATCOM Workshop on Uncertainty Reduction in GHG Inventory Estimates, March 4 – 5, 2003, New Delhi. pp 128 – 138. (https://scholar.google.com/citations?user=VC5kCIsAAAAJ&hl=en)
- Swarup, A. and Singh, M. (2009) Soil carbon dynamics under intensive cropping systems, Journal of the Indian Society of Soil Science, Vol 57(4): 469-476 http://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=57&issue=4&article=008
- Swarup, A. and Yaduvanshi, N.P.S. (2000) Effects of integrated nutrient management on soil properties and yield of rice in alkali soils, Journal of the Indian Society of Soil Science, Vol 48 (2) 279-282, https://www.researchgate.net/profile/Nps_Yaduvanshi2/publication/279923571_Effect_of_Integrated_nutrient_management_on_soil_ properties_and_yield_of_rice_in_Alkali_soils/links/59c8889aaca272c71bc7f778/Effect-of-Integrated-nutrient-management-on-soilproperties-and-yield-of-rice-in-Alkali_soils.pdf
- TK prabhakara Shetty and NA Janardhana Gowda(1997)Performance of rice (Oryza sativa)-based cropping systems in coastal Karnataka, Indian J.Of agronomy, Vol42(1):5-8

(https://www.researchgate.net/publication/296077703_Performance_of_rice_Oryza_sativa-based_cropping_systems_in_coastal_Karnataka)

- Vani, K.P., and Bheemaiah, G., (2003) Effect of alley cropping of castor (Ricinus communis) and integrated nutrietn management practices on productivity status of soil under SAT regions, Indian Journal Of agronomy, Vol 48(3):224-228 http://www.indianjournals.com/ijor.aspx?target=ijor:ija&volume=48&issue=3&article=021
- Verma, K.P., (2001) Effect of crop residue incorporation and nitrogen on succeeding wheat (Triticum aestivum), Indian Journal of agronomy,Vol46(4):665-669 http://www.indianjournals.com/ijor.aspx?target=ijor:ija&volume=46&issue=4&article=016
- WVB Sundara Rao and Anoop Krishan(1963) The effect of manuring and rotation on the soil fertility status and composition of barley crop in the permanent manurial series (A) at Pusa Bihar, Indian Journal of Agronomy, Vol 8(1) :347-357
- Turn, S. Q., Jenkins, B. M., Chow, J. C., Pritchett, L. C., Campbell, D., Cahill, T., & Whalen, S. A. (1997). Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research: Atmospheres, 102(D3), 3683–3699. <u>https://doi.org/10.1029/96JD02979</u>
- United Nations Framework Convention on Climate Change (Organization), & India (Eds.). (2004). India's initial national communication to the United Nations Framework Convention on Climate Change. New Delhi: Ministry of Environment & Forests, Govt. of India.

Abbreviations

AFOLU	Agriculture, Forestry and Other Land Use
AGB	Above Ground Biomass
AWMS	Animal Waste Management System
BGB	Below Ground Biomass
BUR	Biennial Update Report
CH ₄	Methane
CO ₂	Carbon Dioxide
EF	Emission Factor
FSI	Forest Survey of India
GHG	Green House Gas
Gol	Government of India
INCCA	Indian Network on Climate Change Assessment
IPCC	Intergovernmental Panel on Climate Change
MoA	Ministry of Agriculture
MOEFCC	Ministry of Environment, Forest and Climate Change
N ₂ O	Nitrous Dioxide
NATCOM	National Communication to the UNFCCC
NRSC	National Remote Sensing Centre
QA/QC	Quality Assurance/Quality Control
SOC	Soil Organic Carbon

List of Tables

Table ES 1: Overview of GHG Emission Estimates by Gases and Sector for AFOLU sector Table 1.2: Global warming potential as per IPCC assessment reports Table 1.6: Category Wise Outline of GHG Emissions Estimates Table 1.10: Details of key source categories excluded from present GHG estimates Table 2.1 AFOLU Sector trend of GHG Emission estimates by source categories Table 2.2 AFOLU sector distribution of emission contribution by sector for 2015 Table 3.1: GHG estimates for base year and current year Table 3.2: Category wise Analysis of GHG Emissions Estimates (2005-2015) Table 3.3: State-wise GHG estimates (2005-2015) Table 3.4: Summary of Quality Assessment and Quality Control Processes Table 3.5A: Source category wise details on type of data, quality and source Table 3.5B: Source category wise details on tier approach and type of emission factor used Table 3.5C: Categorization of livestock for derivation of methane emission factors Table 3.5D: Emission factor of each sub-group in terms of kilograms of methane per animal per year Table 3.5E: Uncertainties in emission estimation from Enteric Fermentation Table 3.6A: Source category wise details on type of data, quality and source Table 3.6B: Source category wise details on tier approach and type of emission factor used Table 3.6C: Categorization of livestock for derivation of methane emission factors Table 3.6D: Emission factor of each sub-group in terms of kilograms of methane per animal per year Table 3.6E: Categorization of livestock for derivation of methane emission factors Table 3.6F: Nitrogen Emission Factors Table 3.6G: Source category wise description of Qualitative uncertainty Table 3.7A: An overview of source categories of Forest Land Table 3.7B: An overview of emission factors used for forestland Table 3.7C: Source category wise details on the difference between GHG estimates Table 3.7D: Source category wise description of Qualitative uncertainty Table 3.8A: An overview of source categories of Cropland Table 3.8B: An overview of emission factors used for cropland Table 3.8C: Biomass carbon stock in Croplands Table 3.8D: Source category wise details on the difference between GHG estimates Table 3.8E: Source category wise description of Qualitative uncertainty Table 3.9A: An overview of source categories of Grassland

Table 3.9B: An overview of emission factors used for grasslands Table 3.9C: Biomass Carbon Stock in Grassland Table 3.9D: Source category wise details on the difference between GHG estimates Table 3.9E: Source category wise description of Qualitative uncertainty Table 3.10A: An overview of source categories of Settlements Table 3.10B: An overview of emission factors used for settlements Table 3.10C: Source category wise description of Qualitative uncertainty Table 3.11A: An overview of source categories of Other Land Table 3.11B: An overview of Emission Factors used for Other Land Table 3.11C: Source category wise description of Qualitative uncertainty Table 3.12A: An overview of source categories of Forestland Table 3.12B: An overview of Emission factors used for Biomass burning in Forest Land Table 3.12C: Source category wise details on the difference between GHG estimates Table 3.12D: Source category wise description of Qualitative uncertainty Table 3.13A: An overview of source categories of Cropland: Table 3.13B: An overview of emission factors used for biomass burning in cropland Table 3.13C: Source category wise description of Qualitative uncertainty Table 3.14A: An overview of source categories of Aggregate sources and non-CO₂ Emissions Sources on Land Table 3.14B: An overview of emission factors used for N₂O emissions from Managed Soils Table 3.14C: Source category wise details on the difference between GHG estimates Table 3.14D: Source category wise description of Qualitative uncertainty Table 3.14E: An overview of source categories of Rice Cultivation Table 3.14F: An overview of Emission Factors used for Rice Cultivation Table 3.15A: Emission Factor for different water regime for Rice Cultivation Table 3.15B Source category wise description of Qualitative uncertainty Table 4: AFOLU: Source category wise details of deviation in GHG estimates between GHGPI and official inventories published by Government of

India

List of Figures

- Figure 1: Trends of GHG Emissions from AFOLU sector (2005 to 2015)
- Figure 2: Trends of GHG Emissions from AFOLU sector (2005 to 15)
- Figure 3: Trend of GHG Emissions by type of GHG in the AFOLU sector (2005 to 2015)
- Figure 4: Overall Contribution of each Gas in the AFOLU sector Emissions (2005 to 2015)
- Figure 5: Trends of GHG Emissions from (3A) Livestock Sub-sector (2005 to 2015)
- Figure 6: Trends of GHG Emissions from the (3B) Land Sub-sector (2005 to 2015)
- Figure 7: Trends of GHG Emissions from (3C) Aggregate Sources and non-CO2 Emissions Sources on Land (2005 to 2015)
- Figure 8: Per Capita GHG Emissions from the AFOLU sector (2005 to 2015)
- Figure 9: Emission Intensity of AFOLU Sector (Million \$ per tCO2e PPP)