



# Industry Sector Emission estimates (Energy Use, IPPU)

## Lead Partner: Council on Energy, Environment and Water

28 September 2017, New Delhi

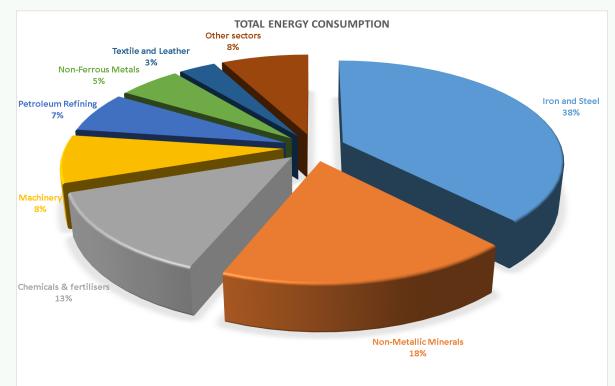
The GHG Platform India is a collective civil society initiative providing an independent estimation and analysis of India's Greenhouse Gas (GHG) emissions across key sectors, namely, Energy, Industry, Agriculture, Livestock, Forestry, Land-use and Land-use change, and Waste.

The platform comprises notable civil society groups in the climate and energy space in India-Council on Energy, Environment and Water (CEEW), Center for Study of Science, Technology and Policy (CSTEP), ICLEI Local Governments for Sustainability-South Asia, Shakti Sustainable Energy Foundation, Vasudha Foundation and World Resources Institute-India.

# Introduction: What does industry represents?

## Industry:

- Represents **diverse** set of manufacturing activities
- Accounts for ~25% of India's overall GHG emissions
- Offers opportunity for deep decarbonisation of Indian economy


India's NDC commitment: Aims to reduce emission intensity of its GDP by 33% to 35% by 2030 (from 2005 levels)

#### In contrast to

Also, India has ambition to raise Manufacturing base under the 'Make in India' plans

## **Decarbonisation looks challenging!**

How must the industrial transition be managed to as to move towards a lower GHG intensity pathway?





# Introduction: Objective and Scope of industrial estimates

## Scope and coverage: (As per IPCC guidelines)

- **A. Energy Industries:** Petroleum refining 1A1b; Manufacturing of Solid fuels 1A1ci; Mining & Hydrocarbon extraction 1A1cii
- B. Manufacturing industries: 1A2a to 1A2m
- C. Industrial processes and product use emissions: 2A, 2B, 2C, 2D & 2H

## **Exclusions**

- Manufacturing Industries: Construction (1A2k);
- IPPU: Fluorochemical production (2B9), Electronics (2E), Refrigerants (2F), and Electrical products (2G)
- Emissions due to F-gases

## Tiers of emission factor reporting

- Tier I : Using global/regional average values
- Tier II : Using national level understanding on fuels and general industrial processes
- Tier III : Most granular form of information available at the level of individual factory level.

## **Data Sources**

## Primarily Annual Survey of Industries (ASI) – covers 63% to 68% of our estimates

#### **Energy use emissions**

- Petroleum refining Indian PNG stats (2005-13)
- Solid fuel manufacturing ASI (2005-13)
- Other energy industries
  - Natural gas extraction Indian PNG stats (2005-13)
  - Coal mining using specific diesel consumption from CIL annual report 2006-07
- Fuel consumption in manufacturing industries ASI (2005-13)

#### **IPPU** emissions

- Cement production CMA (2006-08); IBM Mineral Yearbook (2008-13)
- Lime and glass production ASI (2005-13)
- Ammonia and nitric acid production ASI (2005-13)
- Other chemicals production Annual Report-Ministry of chemicals and fertilizers (2006-13)
- Iron & Steel and ferro alloys production ASI (2005-13)
- Aluminium production MCX India (2006-09); IBM Mineral Yearbook (2009-13)
- Lead & Zinc production IBM lead & zinc market survey report (2006-08); IBM Mineral Yearbook (2008-13)
- Non-energy product use
  - Lubricant use ASI (2005-13)
  - Paraffin use ASI (2005-13)

# Data Coverage (1/2)

- ASI comprehensive, periodic (annual), covers majority of formal sector of manufacturing
  - What's left out from ASI?
  - Unregistered firm: ~ 17 million

#### How does this compares with National energy statistics (Industry)?

Total energy use from ASI (bottom up) equates reasonably well with the national energy statistics (for industries, top down)

|         | All              | % deviation          |            |           |
|---------|------------------|----------------------|------------|-----------|
| Year    | Ministry sources | <b>CEEW</b> Estimate | NITI AAYOG | with NITI |
| 2005-06 | 75               | 64                   | 85         | 33%       |
| 2006-07 | 86               | 74                   | 94         | 26%       |
| 2007-08 | 92               | 93                   | 100        | 8%        |
| 2008-09 | 99               | 95                   | 112        | 19%       |
| 2009-10 | 110              | 116                  | 116        | 0%        |
| 2010-11 | 115              | 120                  | 113        | -6%       |
| 2011-12 | 146              | 127                  | 125        | -2%       |
| 2012-13 | 179              | 145                  | 141        | -3%       |
| 2013-14 | 191              | 154                  | 153        | -1%       |

• Inconsistencies within public sources of data

239000

For 2005-06

~16

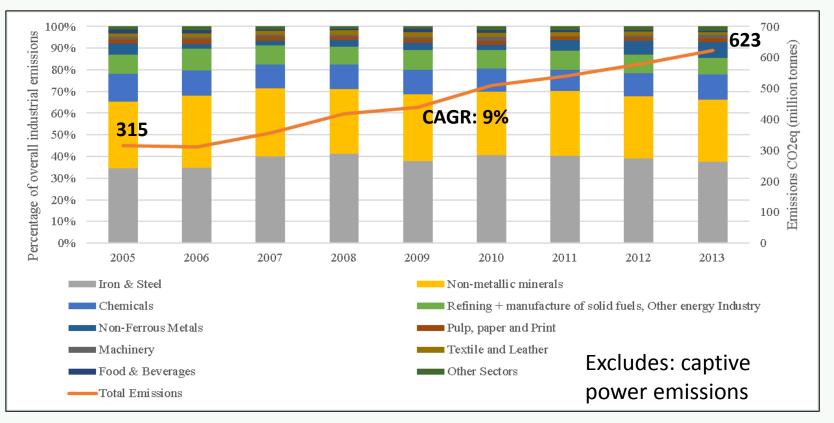
million

- Data on imported fuels intake from industry is not clear from national records
- In recent years NITI Aayog's data portal indicates more alignment with ASI

# Data Coverage (2/2)

## Advantages:

- Economy wide coverage at state and sectoral level
- Mix of census and survey
  - Survey represented ~ 93% of emissions in 2013
- Captures reporting on 80+ fuel variants
- Separate reporting for imported and domestic fuel inputs
- Separately reports captive power generation, hence easy to avoid duplicity in reporting


## **Disadvantages:**

- Does not separate Fuel and Feedstock use of energy inputs
- Certain firms reports only expenditure on liquid fuel, does not specify quantity and variant of liquid fuel
- Few cases of erroneous reporting of fuel rates
- Sizable amount of expenses in other fuels ASI considers them to be largely 'bio-fuel' which is net carbon-neutral

We have provided a comprehensive feedback to MOSPI on our experience with the use of ASI statistics.

**Recent developments:** ASI has already shifted to the online recordkeeping mode for the round conducted in 2013-14. This means better quality checks and more reliable statistics are only around the corner!

# Findings: Sectoral split and growth in emissions



#### Year on year growth of GHG emissions and dominant sectors

## Major contributors (2013):

Iron and Steel: 38% Non-metallic (cement): 29%

Share of energy & IPPU Energy: 75% IPPU: 25%

**Coal:** Driver of energy use emissions **Cement**: Represents more than 50% of IPPU (largely due to limestone)

# Findings: State specific share

#### 700 CO2Eq (million tonnes) 600 500 400 300 Emissions 200 1000 2005 2006 2007 2008 2009 2010 2011 2012 2013 Gujarat ■Odisha Chattisgarh ■ Jharkhand Karnataka Maharashtra Andhra Pradesh Tamil Nadu Rajasthan Other States ■ West Bengal

## State wise emissions from the manufacturing sector

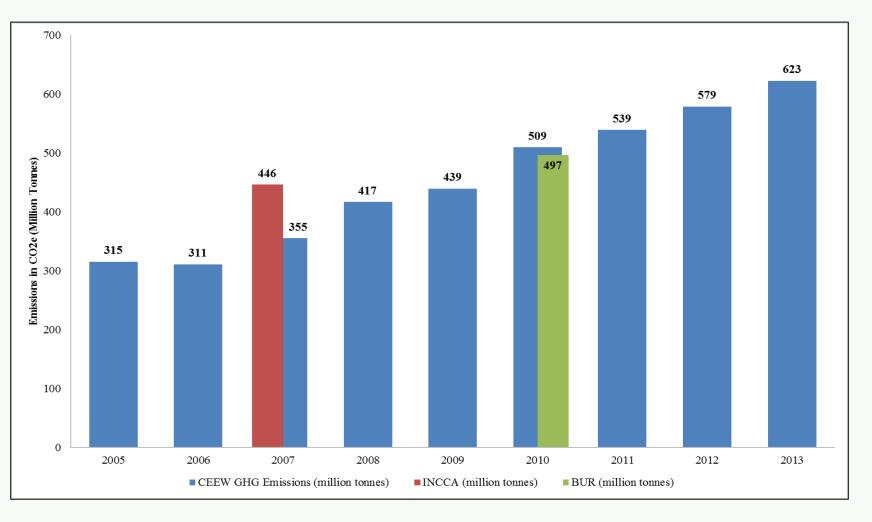
- Considered all states/UTs, except: Mizoram and Lakshadweep
- 10 States: ~ 85% of emission share
  - Gujarat (14%)
  - Odisha (13%)
  - Chhattisgarh (10%)
  - Jharkhand (9%)
  - Karnataka (8%)
  - Maharashtra (8%)
  - Andhra Pradesh (7%)
  - Tamil Nadu (6%)
  - Rajasthan (5%)
  - West Bengal (5%)

- Coal is principle source of emission for most states
- Gujarat alone expends 23% of Natural gas, and, 12% of petroleum fuels demand of Industries in India

# Findings: Growth and emission drivers within states

| State          | Iron |      | Cement Chemi |      | nicals | s Refinery |   | Aluminium |   | Textile |   | Paper |   |      |
|----------------|------|------|--------------|------|--------|------------|---|-----------|---|---------|---|-------|---|------|
| Gujarat        | ☆    | 57%  | _            | -13% | -      | -7%        |   | 18%       |   | 33%     |   | -1%   |   | 42%  |
| Odisha         |      | 24%  |              | 2%   |        | 46%        |   |           | Ļ | -3%     |   |       |   | 24%  |
| Chattisgarh    |      | 59%  |              | 38%  |        |            |   |           | Ļ | -22%    |   |       |   |      |
| Jharkhand      | -    | -27% |              | 130% |        |            |   |           |   |         |   |       |   |      |
| Karnataka      | ↓    | -61% | ₽            | -25% |        | 52%        | ł | -58%      | ł | -20%    | ł | -17%  |   | 40%  |
| Maharashtra    |      | 5%   |              | 8%   |        | 6%         |   | 0%        |   | 50%     | ſ | -18%  | ł | -23% |
| Tamil Nadu     | ↓    | -8%  | ł            | -13% |        | 26%        | ł | -52%      |   | 107%    | ł | -5%   |   | 14%  |
| Andhra Pradesh | ↓    | -5%  |              | 6%   | -      | -11%       |   |           |   |         | ł | -9%   |   | 21%  |
| West Bengal    |      | -4%  |              |      |        | -58%       |   |           |   | -46%    |   | -2%   | ł | -16% |
| Uttar Pradesh  |      | 55%  |              |      |        | 16%        |   |           |   | -13%    | ł | -18%  |   | 8%   |
| Rajasthan      |      |      |              | 14%  |        | 2%         |   |           |   | 20%     |   | 6%    |   |      |
| Madhya Pradesh |      |      |              | -13% |        | 10%        |   |           |   |         |   | 1%    | ↓ | -28% |

### Percentage change in the industrial value addition share within the states




These sectors = 90% of industry energy demand

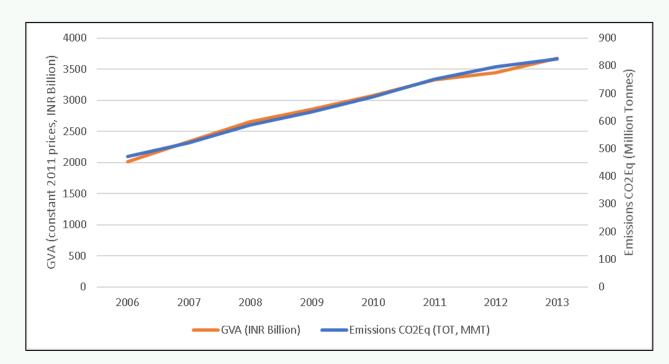
## Growth and emission Drivers:

- Gujarat: Expansion of all sectors
- Odisha: Iron, Chemicals, Paper
- Chhattisgarh: Iron and Cement
- Jharkhand : Cement Industry
- Karnataka: Chemicals and Paper
- Tamil Nadu: Aluminium

## Findings: Comparison with National reporting (INCCA: 2007 and BUR:2010)



#### **Observations**:


- Huge disparity for 2007 INCCA is not an official UNFCCC submission, lack clarity
- BUR: Marginal deviation (~3%)

## Note: We have not included 36 MT CO2e of F-gases based emissions from IPPU in BUR; out of scope

#### Source: CEEW analysis; BUR (MOEFCC), INCCA (MOEFCC)

## Takeaways (1/2)

- No significant decoupling between Industrial emissions and GVA contributed.
  - Although, considering captive and grid electricity intake, an intensity reduction of 15% has been achieved!
- Chhattisgarh and Odisha have huge scope of energy intensity reduction from Iron & Steel and Cement Manufacturing; State must use benchmarks set by leading performers in each sector.
- Concerted natural gas infrastructure planning and a favourable price regime resulted increasing the penetration of natural gas in Gujarat, Maharashtra, and Uttar Pradesh. This needs to be taken up pan-India
- Technology upgradation is another big driver which need to be implemented in many states





# Takeaways (2/2)

 Data: Collective efforts from all relevant ministries (Coal, Power, MOPNG, MOSPI) and civil society groups is needed to improve energy statistics reporting within country. A top-down and bottom-up matching certainly suffice this requirement

### Sub-national level estimates will be highly useful in:

- ✓ Identifying: sectors, sources, and activities, within the states , which are responsible for GHG emissions
- ✓ Understanding emission trends, and establish a basis for developing an action plan
- ✓ Quantifying the benefits of activities that reduce emissions
- ✓ Tracking progress of emission reduction, hence contributes to the MRV (transparency) process
- ✓ Setting goals and targets for the future through a rational approach
- Engaging local bodies and state specific industries in a more effective manner to regulate emissions







www.ghgplatform-india.org

